

1. Simplify ${ }_{m+2} C_{m}$ Leaving NO factorials in your answers.

$$
=\frac{(m+2)!}{m!(m+2-m)!}=\frac{(m+2)^{!}}{m!2!}=\frac{(m+2)(m+1) n^{\prime!}}{n!2}=\frac{(m+2)(m+1)}{2}
$$

2. How many different letter arrangements can you make using all the letters in the word TOMORROW?

$$
\frac{8!}{3!2!}=3360 \text { ways }
$$

3. How many different five letter arrangements can you make using the letters in the word SIGNATURE if the first letter must be a vowel and the second letter must be a T ?

$$
4 \cdot 7 \cdot 6 \cdot 5 \cdot 1=840 \text { ways }
$$

4. You are opening a sandwich shop. You will offer 5 different types of bread, 6 different types of meat, 10 different types of vegetables, and 4 different types of dressings. How many different sandwiches can you make if you use one type of bread, one type of meat, two different vegetables, and one dressing?

5. I need to pick a new password for my IPhone. The password consists of 4 numbers and each number is a digit.
a. How many passwords do I have to choose from if there are no repeats?

$$
10.98 .7=5040 \text { passwords }
$$

b. How many passwords do I have to choose from if repeats are okay?

$$
10^{4}=10000 \text { passwords }
$$

c. How many passwords do I have to choose from if I do not want all 9s but I can have repeats?

6. I have 20 students that came in for extra help before the quiz. To reward them for working so hard I am going to put all of their names in a bag and pull three names out to win a homework pass. How many ways can I pick the winners?

$$
{ }_{20} C_{3}=1140 \text { ways }
$$

7. Eight girls on the Color Guard team will try-out for Captain and assistant to the Captain, how many ways can I select the two positions?

$$
8 P_{2}=5 l \text { ways }
$$

9a. How many ways can 10 students line up at the door?

$$
10!
$$

9b. How many ways can 10 students line up at the door if Tammy, Sam, and Chuck want to be next to each other.

10. The school is forming a committee of 5 . There are 12 students, 7 boys and 5 girls, to pick from.
a. How many ways can the committee have 3 girls and 2 boys?

$$
{ }_{5} C_{3} \cdot{ }_{7} C_{2}=210 \text { ways }
$$

b. How many ways can the committee have at least 3 boys?

$$
\begin{aligned}
& 3 b 2 g \text { or } 4 b \lg \text { or }{ }_{5 b} 0 g \\
& { }_{7} d_{3}{ }_{5} C_{2}+{ }_{7} C_{4} \cdot{ }_{5} C_{1}+{ }_{7} C_{5}=546 \text { ways }
\end{aligned}
$$

11. A couple has narrowed down the choice of a name for their new baby to three first names and five middle names. How many different first- and middle- name arrangements are possible?
$3 \cdot 5$

12. How many ways can three men and three women be seated in a row:
a. So that no two men nor two women are seated next to each other?

$$
2 \cdot{ }_{3} P_{3} \cdot 3 P_{3}=2 \cdot 3!\cdot 3!
$$

$$
\frac{3}{M} \frac{3}{w} \frac{2}{M} \frac{2}{w} \frac{1}{m} \frac{1}{w} \frac{3}{w} \frac{3}{M} \frac{2}{w} \frac{2}{m} \frac{1}{M}
$$

b. If one specific couple must be in the middle?
morn

$$
432-1 \text { or }
$$

$$
2 \cdot 4 \rho 4=2 \cdot 4!
$$

13. In how many ways can 4 people be seated in a row of 12 chairs?

$$
12 P 4
$$

14. From a standard deck of 52 cards, a 5 card hand is dealt. In how many ways can the hand include:
c. All face cards? 12 face CARDS J,K,Q of eAch SUIt

$$
12 C_{5}
$$

d. No face cards?

$$
40 C_{5}
$$

e. At least one face card?

$$
{ }_{52} C_{5}+40 C_{5}
$$

15. Five boys and five girls stand in a line. How many arrangements are possible if:
f. All of the boys stand in succession?

$$
5 P_{5} \cdot 5 P_{5}
$$

g. The boys and girls stand alternately?

$$
2 \cdot 5 P 5 \cdot 5 P 5
$$

16. How many distinguishable arrangements can be formed from the letters in TALLAHASSEE ?

$$
\frac{11!}{3!\cdot 2!\cdot 2!\cdot 2!}
$$

17. Out of a group of 5 sophomores and 7 juniors, a committee of 4 students is being formed to help plan Hinsdale Central's Graduation ceremony.
h. How many committees are possible?

$$
{ }_{12} C_{4}
$$

i. What if the committee is to be comprised of only juniors?

$$
7 C 4
$$

j. What if the committee must have either all juniors or all sophomores?

$$
7 C 4+5 C 4
$$

k. What if the committee must have at least one sophomore?

$$
{ }_{12} C_{4}-7 C_{4}
$$

