5. $f(x)=\frac{1}{3-x} \quad c=1$

$$
\begin{aligned}
& f(x)=\frac{1}{-1+3-(x-1)}=\frac{1}{2-(x-1)} \cdot \frac{1}{2} \\
& f(x)=\frac{\left.\frac{1}{2}\right)}{1-\frac{(x-1)}{2}} \quad a=1 / 2 \quad r=\frac{x-1}{2}
\end{aligned}
$$

4) power sures $\Rightarrow \frac{1}{2}+\frac{x-1}{4}+\frac{(x-1)^{2}}{8}+\ldots . .+=\sum_{n=0}^{\infty} \frac{1}{2}\left(\frac{x-1}{2}\right)^{n}$ or $\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n+1}(x-1)^{n}$

$$
\left|\frac{x-1}{2}\right|<1 \quad-1<\frac{x-1}{2}<1 \quad-2<x-1<2 \quad-1<x<3
$$

* interval of convergince $=(-1,3)$

11. $f(x)=\frac{3}{3 x+4}, \quad c=0$

$$
f(x)=\left(\frac{3}{4+3 x} \cdot \frac{1}{4} \cdot 1 / 4 \quad f(x)=\frac{3 / 4}{1+\frac{3}{4} x} \quad a=3 / 4 \quad r=(-3 / 4 x)\right.
$$

* pourer series $\Rightarrow \frac{3}{4}+-\frac{9 x^{2}}{16}+\frac{27}{64} x^{3}+\cdots=\sum_{n=0}^{\infty} \frac{3}{4}\left(-\frac{3}{4} x\right)^{n}$

$$
\left|-\frac{3}{4} x\right|<1 \quad-1<\frac{3}{4} x<1 \quad-4<3 x<4 \quad-\frac{4}{3}<x<\frac{4}{3}
$$

* interval of convergence $(-4 / 3,4 / 3)$

15. $f(x)=\frac{2}{1-x^{2}} \quad a=2 \quad r=x^{2}$

*

$$
\begin{aligned}
& \text { power series } \\
& 2+2 x^{2}+2 x^{4}+2 x^{2}+\cdots \cdot=\sum_{n=0}^{\infty} 2 x^{2 n} \\
& \left|\left.\right|^{2}\right|<1 \quad-1<x<1
\end{aligned}
$$

O Interval of convergence $(-1,1)$
16. $f(x)=\frac{5}{5+x^{2}} \quad f(x)=\frac{1}{1+\frac{x^{2}}{5}} \quad a_{1}=1 \quad r=\left(\frac{-x^{2}}{5}\right)$

* power series $1-\frac{x^{2}}{5}+\frac{x^{4}}{25}+\frac{x^{4}}{125}+\cdots \sum_{n=0}^{\infty}\left(-\frac{x^{2}}{5}\right)^{n}$

$$
\left|\frac{-x^{2}}{5}\right|<1 \quad \frac{x^{2}}{5}<1 \quad-\sqrt{x^{2}<5} 8 x<\sqrt{5}
$$

* interval of convergences $(-\sqrt{5}, 5)$

$$
\text { For \#19 }, 21 \quad \frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}-x
$$

19. $f(x)=-\frac{1}{(x+1)^{2}}=\frac{d}{d x}\left(\frac{1}{x+1}\right)$

$$
\begin{aligned}
& * \sum_{n=0}^{\infty} \frac{(-1)^{(n)} n x^{n-1}}{} \sum_{n=0}^{\infty}(-1)^{n+1}(n+1) x^{n} \\
& \lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+2}(n+2) x^{n+1}}{(-1)^{n+1}(n+1)\left(x^{n}\right)}\right|= \lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+2}(n+2) x}{(-1)^{n+1}(n+1)}\right| \\
&|x|<1 \quad-1<x<1
\end{aligned}
$$

interval of convergence $(-1,1)$
21. $f(x)=\ln (x+1)=\int \frac{1}{x+1} d x$

$$
C+\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1}
$$

Find C since the center is a $x=0$

$$
\begin{aligned}
& c=\ln (0+1) \quad c=0 \\
& \sum_{n \rightarrow \infty}^{\infty}\left|\frac{(-1)^{n} x^{n+1}}{n+1}\right| \\
& \left\lvert\, \begin{array}{l}
\left.\frac{(-1)^{n+1} x^{n+2}}{n+2} \cdot \frac{n+1}{(-1)^{n} \cdot x^{n+1}}\left|=\lim _{n \rightarrow \infty}\right| \frac{-1 x(n+1)}{(n+2} \right\rvert\, \\
|x|<1 \quad-1<x<1
\end{array}\right.
\end{aligned}
$$

check endpts

$$
\begin{array}{ll}
x=-1 & \sum_{n=0}^{\infty} \frac{(-1)^{n}(-1)^{n+1}}{n+1}
\end{array} \sum_{n=0}^{\infty} \frac{-1}{n+1} \text { diverges } \quad \begin{array}{ll}
\sum_{n=0}^{\infty} \frac{(-1)^{n}(1)^{n+1}}{n+1} & \text { alt series } \\
& \frac{1}{n+1} \geq 0 \\
\frac{1}{n+1} \geqslant \frac{1}{n+2} \\
& \lim _{n \rightarrow \infty} \frac{1}{n+1}=0
\end{array}
$$

* conn. cone a) $x=1$

Converges $(-1, I]$
converges abs $(-1,1)$

