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The Definite Integral of a Continuous Function on [ a, b]

Let f be continuous on [a, b |, and let [ a, b | be partitioned into n subintervals of
equal length Ax = (b — a)/n. Then the definite integral of f over [a, b | is given by

lim E f(cr)A

n=—o0 k=1

where each ¢, is chosen arbitrarily in the k" subinterval.
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lim Ef (cp)Ax = f(x
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Upper limit ofmlegratum Tlu, function is the integrand.

x is the variable of integration.
Integral mgn\\h (
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When you find the value
of the integral, you have
evaluated the integral.

Lower limit of integration

Integral of,'f from a to b

The value of the definite integral of a function over any particular interval depends on
the function and not on the letter we choose to represent its independent variable. If we
decide to use f or u instead of x, we simply write the integral as

b b b
/f(r)dt or /f(u)a’u instead of f(x) dx

No matter how we represent the integral, it is the same number, defined as a limit of
Riemann sums. Since it does not matter what letter we use to run from a to b, the variable
of integration is called a dummy variable.



A Definition of the Integral Based on RRAM Name

b
To find I f(x)dx , the “area” between the x-axis and a curve f(x)on an interval [a,b]we can first divide the

area between the x-axis and the curve f(x) into “rectangles”, each of width Ax = Lt and “height” f(c,),
n

b—a

where ¢, =a+kAx. We can then find the area under the curve by multiplying the width Ax= of each

n
rectangle by its height f(c,) and adding/summing the areas of all the rectangles as we let the number of

rectangles approacheo.
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In other words, j ofi (x)dx:limz flc,)eAx where Ax= g6 and ¢, =a+kAx
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Examples: Write the limit as a definite integral.
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Homework

(1-2) Multiple Choice
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(3-6) Rewrite the given limit as a definite integral.
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