

Group Members:

$$
k \varepsilon y
$$

1. The velocity of a particle moving along the x-axis in $\mathrm{cm} / \mathrm{sec}$ is given by $v(t)=3 t-t^{2}$ on the interval $0 \leq t \leq 4$. (No Calculator)

$$
\begin{aligned}
& 3 t-t^{2}=0 \\
& t(3-t)=0
\end{aligned}
$$

a) Find the displacement of the particle at $t=4 \mathrm{sec}$.

b) Find the total distance traveled from $t=0$ sec. to $t=4 \mathrm{sec}$.

$$
\begin{aligned}
& \text { b) Find the total distance traveled from } t=0 \text { sec. to } t=4 \text { sec. } \\
& \begin{aligned}
\left.\int_{0}^{3}\left(3 t-t^{2}\right) d t=\frac{3}{2} t^{2}-\frac{1}{3} t^{3}\right]_{0}^{3} & =\frac{3}{2} \cdot 3^{2}-\frac{1}{3} \cdot 3^{3}-0 \\
& =\frac{27}{2}-9=\frac{27}{2}-\frac{18}{2}=\frac{9}{2}
\end{aligned} \\
& \begin{aligned}
\left.\int_{3}^{4}\left(3 t-t^{2}\right) d t=\frac{3}{2} t^{2}-\frac{1}{3} t^{3}\right]_{3}^{4} & =\left(\frac{3}{2}(16)-\frac{1}{3} \cdot 4^{3}\right)-\left(\frac{3}{2} \cdot 3^{2}-\frac{1}{3}(3)^{3}\right) \\
& =24 \cdot 6-\frac{64 \cdot 2}{3 \cdot 2}-\frac{9 \cdot 3}{2 \cdot 3}=\frac{144}{6}-\frac{128}{6}-\frac{27}{6} \\
& =\frac{-11}{6}
\end{aligned} \\
& \text { Tot al distance }=\frac{9}{2}+\frac{11}{6}=\frac{38}{6} \mathrm{~cm} \quad \frac{11}{6}
\end{aligned}
$$

c) Find the final position of the particle at $\mathrm{t}=4 \mathrm{sec}$ if $\mathrm{s}(0)=3 \mathrm{~cm}$.

$$
\text { Final pos. }=3+\frac{8}{3}=\frac{17}{3} \mathrm{~cm}
$$

1. The rate at which water is pumped out of a pumping station is given by $r(t)=5.01+1.02^{t}$ in millions of gallons per month from Jan. $1^{\text {st }}, 2000$. How much total water has been pumped out of the station on April $1^{\text {st }}, 2000$? (Calculator OK)

$$
\text { Totul }=\int_{0}^{3}\left(5.01+1.02^{t}\right) d t \approx 18.121 \text { million gallons }
$$

2. Given the graph of the velocity of a dog moving back and forth on a rope in a yard (that is connected ty his leash) where the velocity is measured in $\mathrm{ft} / \mathrm{sec}$. (No Talc.)

a) What is the displacement of the dog in the 10 seconds?

$$
\int_{0}^{10} v(t) d t=\frac{1}{2} 5.3-\frac{1}{2} 5.3=0 f t
$$

b) What is the total distance traveled by the dog in the 10 seconds?

$$
\int_{0}^{10}|v(t)| d t=\frac{1}{2} 5.3+\frac{1}{2} 5.3=15 \mathrm{ft}
$$

c) What is the dog's acceleration at $\mathrm{t}=3$ seconds? (Give correct units.)

$$
a(3)=1-1 \mathrm{ft} / \sec ^{2}
$$

\qquad

1. Find the area between the graphs of $y=x$ and $y=x^{3}$. (No Calculator)

$$
\begin{aligned}
& x^{3}-x=0 \\
& x\left(x^{2}-1\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \left.x^{2}-1\right) \\
& x=0, x=1,-1
\end{aligned}
$$

$$
\begin{aligned}
& 2 \int_{0}^{1}\left(x-x^{3}\right) d x \\
& 2\left[\frac{1}{2} x^{2}-\frac{1}{4} x^{4}\right]_{0}^{1} \\
& 2\left[\frac{1}{2}-\frac{1}{4}-0\right]=2 \cdot \frac{1}{4}=\frac{1}{2}
\end{aligned}
$$

2. Find the area between the graphs of $x-2 y=3$ and $x-y^{2}=0$. (No Calculator)

$$
\begin{aligned}
& x=2 y+3 \quad \begin{array}{l}
x=y^{2} \\
y^{2}=2 y+3
\end{array} \\
& \rightarrow x=y^{2} \quad y^{2}-2 y-3=0 \quad \begin{array}{l}
(y-3)(y+1)=0 \\
y=3, y=-1
\end{array} \\
& \left.\int_{-1}^{3}\left(2 y+3-y^{2}\right) d y=y^{2}+3 y-\frac{1}{3} y^{3}\right]_{-1}^{3} \\
&
\end{aligned}
$$

$$
\begin{array}{r}
y^{2}=2 y+3 \\
-x=y^{2} \quad y^{2}=2=0
\end{array}
$$

1. Find the area bounded by the y-axis, the parabola $y=x^{2}$, and the graph of $y=\cos x$.

$$
\uparrow \quad \begin{aligned}
& \cos x=x^{2} \\
& x \approx .824 \in A
\end{aligned}
$$ (Calculator OK)

$$
\int_{0}^{A}\left(\cos x-x^{2}\right) d x \approx .547
$$

2. Find the area bounded by $y=x+3$ and $y=e^{x}-1$.

$$
\begin{aligned}
& e^{x}-1=x+3 \\
& x \approx 1.749,-3.981 \subset_{B} \\
& \int_{B}^{A}\left(x+3-\left(e^{x}-1\right)\right) d x \\
& \approx 10.795
\end{aligned}
$$

Names:

Worksheet	$1^{\text {st }}$ Attempt - 3 points	$2^{\text {nd }}$ Attempt - 2 points	3rd Attempt - HIGH FIVE!
A			
B			
C			
D			
Total Points			

3 Strikes Yer Out Rules

1) Each worksheet has 2-4 problems. After you are done, bring up the one you finished for grading.
2) You must work together so that each group member is at the same pace.
Note: Hitchhiking is illegal in Calculus!!
3) When your whole group is finished with the worksheet, one person should bring ALL worksheets to check with me. Bring your score sheet with you!!
4) Scoring:

- If your group gets $A L L$ problems correct the first time, you will receive 3 points (to be written on the score sheet).
- Otherwise, you will have to take your sheet, go back, and correct them....on the second time, you will receive 2 points.
-on the third time...it's a HIGH FIVE FOR YOU!!

Good Luck!!

