

1. The velocity of a particle moving along the x-axis in cm/sec is given by $v(t) = 3t - t^2$ on the interval $0 \le t \le 4$. (No Calculator) $3t - t^2 = 0$ t(3-t) = 0

a) Find the displacement of the particle at t = 4 sec. $\int_{1}^{4} (3t - t^{2}) dt = \frac{3}{2}t^{2} - \frac{1}{3}t^{3}$ $= (\frac{3}{2}(16) - \frac{1}{3}(64)) - 0 = 24 - \frac{64}{3}$

b) Find the total distance traveled from t = 0 sec. to t = 4 sec.

$$3t - t^2)dt = \frac{3}{2}t^2 - \frac{1}{5}t^2 \int_{0}^{\infty} = \frac{3}{2}\cdot 3^2 - \frac{1}{5}\cdot 3^2 - 0$$

= $\frac{27}{2} - 9 = \frac{27}{2} - \frac{9}{2} = \frac{27}{2}$

$$\int (3t - t^{2})dt = \frac{3}{2}t^{2} - \frac{1}{3}t^{3}\Big]_{3}^{q} = \left(\frac{3}{2}(16) - \frac{1}{3}t^{3}\right) - \left(\frac{3}{2}\cdot3^{2} - \frac{1}{3}t^{3}\right)^{3}$$

$$= 24\cdot 6 - \frac{64\cdot 2}{3\cdot 2} - \frac{9\cdot 3}{2\cdot 3} = \frac{144}{6} - \frac{128}{6} - \frac{27}{6}$$

$$= \frac{7}{11}$$

$$= \frac{11}{6}$$

$$= \frac{11}{6}$$

c) Find the final position of the particle at t = 4 sec if s(0) = 3cm.

Final pos. =
$$3 + \frac{8}{3} = \frac{17}{3} \text{ cm}$$

	· · · · · · · · · · · · · · · · · · ·	- • 1
3 Strikes Yer Out!	Group Members:	i
1 ST TRY 3 POINTS 2ND TRY 2 POINTS 3ND TRY 2 POINTS		
3 RD TRY High five!		

1. The rate at which water is pumped out of a pumping station is given by $r(t) = 5.01 + 1.02^{t}$ in millions of gallons per month from Jan. 1st, 2000. How much total water has been pumped out of the station on April 1st, 2000? (Calculator OK)

$$Total = \int (5.01 + 1.02^{*}) dt = [18.121 million gallins]$$

2. Given the graph of the velocity of a dog moving back and forth on a rope in a yard (that is connected to his leash) where the velocity is measured in ft/sec. (No Calc.)

1. Find the area between the graphs of y = x and $y = x^3$. (No Calculator)

2. Find the area between the graphs of x-2y=3 and $x-y^2=0$. (No Calculator)

1. Find the area bounded by the y-axis, the parabola $y = x^2$, and the graph of $y = \cos x$. (Calculator OK)

2. Find the area bounded by y = x + 3 and $y = e^x - 1$.

Names:

1 d Attompt		
1* Attempt –	2 nd Attempt –	3 rd Attempt –
3 points	2 points	
5 points	2 points	
	3 points	3 points 2 points

_

3 Strikes Yer Out Rules

- 1) Each worksheet has 2-4 problems. After you are done, bring up the one you finished for grading.
- 2) You must *work together* so that each group member is at the same pace.

Note: Hitchhiking is illegal in Calculus!!

- 3) When your whole group is finished with the worksheet, one person should bring *ALL* worksheets to check with me. Bring your *score sheet* with you!!
- 4) Scoring:
 - If your group gets *ALL* problems correct the first time, you will receive 3 points (to be written on the score sheet).
 - Otherwise, you will have to take your sheet, go back, and correct them....on the second time, you will receive 2 points.
 -on the third time...it's a HIGH FIVE FOR YOU!!

Good Luck!!