

Group Members:

$$
K \varepsilon y
$$

1. Find the linearization of $f(x)=\frac{4}{x^{4}}-2 x$ at $\mathrm{x}=-1$.

$$
\begin{array}{ll}
\text { 1. Find the linearization of } f(x)=\frac{-1}{x^{4}}-2 x \text { at } x=-1 . \\
f^{\prime}(x)=\frac{-16}{x^{5}}-2 & y-6=14(x+1) \\
f^{\prime}(-1)=\frac{-16}{-1}-2=14 & L(x)=14(x+1)+6 \\
f(-1)=4+2=6 & L(x)=14 x+20
\end{array}
$$

2. Use the linearization in \#1 to estimate $\mathrm{f}(-0.99)$.

$$
L(-0.99)=14(-0.99+1)+6=.14+6=6.14
$$

3. Find the exact value of $f(-0.99)$ and then find the approximation error.

$$
\begin{aligned}
& f(-0.99)=6.144081423 \\
& \begin{array}{c}
\text { Error } \approx .00408 \\
\text { amor is less than } 10^{-2} .
\end{array}
\end{aligned}
$$

Group Members:

$$
K \varepsilon y
$$

1. Find dy if $y=\frac{7}{2} x^{2}-3 x+1, \mathrm{x}=4, \mathrm{dx}=.03$

$$
\begin{aligned}
& \frac{d y}{d x}=7 x-3 \\
& d y=(7 x-3) d x \\
& d y=(7.4-3)(.03)=25 \cdot(.03)=.75
\end{aligned}
$$

2. Given the function: $f(x)=\frac{x-4}{x+2}, \mathrm{x}=1, \mathrm{dx}=.02$. Find the:
a) true change

$$
f(1.02)-f(1)=-.9867549669+1 \approx .013245
$$

b) estimated change

$$
\begin{aligned}
\frac{d f}{d x}=\frac{(x+2)(1)-(x-4)(1)}{(x+2)^{2}}=\frac{6}{(x+2)^{2}} \quad d f & =\frac{6}{9} .02 \\
& =.01 \overline{3}
\end{aligned}
$$

c) approximation error
8.83×10^{-5} Eras is less than 10^{-4}.
3. How accurately should you measure the radius of a sphere so that the surface area is within 5% of its true value?

$$
\begin{aligned}
& d A=.05 A \\
& A=4 \pi r^{2} \\
& \frac{d A}{d r}=8 \pi r \\
& d A=8 \pi r d r \\
& .05 A=8 \pi r d r
\end{aligned}
$$

$$
d r=?
$$

$$
\begin{aligned}
\frac{.05 .4 x r^{2}}{8 \pi t} & =\frac{8 p r d r}{8 h t} \\
.025 r & =d r
\end{aligned}
$$

The radius should be measured to within 2.5% of its tue value.

A slinky, which is essentially a cylinder, is being stretched apart. The length of the slinky is stretching at a rate of 4 cm per second, and the volume of the slinky stays constant. At what rate is the radius of the slinky shrinking when the radius is 3 cm and the length is 10 cm ?
h

$$
\begin{aligned}
& \frac{d h}{d t}=4 \quad V \text { is con stan! } \\
& \frac{d r}{d t}=? \quad r=3 \quad h=10 \\
& V=\pi r^{2} h \\
& 0=\pi r^{2} \frac{d h}{d t}+2 \pi r h \frac{d r}{d t} \\
& 0=\pi(3)^{2}(4)+2 \pi(3)(10) \frac{d r}{d t} \\
& 0=36 \pi+60 \pi \frac{d r}{d t} \\
& -36 \pi=60 \pi \frac{d r}{d t} \\
& \frac{d r}{d t}=-.6 \mathrm{~cm} / \mathrm{sec} .
\end{aligned}
$$

Mike is at a birthday party and decides it would be funny to suck the helium out of a spherical balloon. If Mike can suck the helium out of the balloon at a rate of 4 cubic inches per second, at what rate will the radius be shrinking when the radius is 2 inches?

$$
\begin{aligned}
\frac{d V}{d t} & =-4 \quad \frac{d r}{d t}=? \quad r=2 \\
V & =\frac{4}{3} \pi r^{3} \\
\frac{d V}{d t} & =4 \pi r^{2} \frac{d r}{d t} \\
-4 & =4 \pi(2)^{2} \cdot \frac{d r}{d t} \\
-4 & =16 \pi \frac{d r}{d t} \\
\frac{d r}{d t} & =-\frac{1}{4 \pi} \approx-.080 \mathrm{in} / \mathrm{sec} .
\end{aligned}
$$

Names:

Worksheet	$1^{\text {st }}$ Attempt - 3 points	2nd 2 points	3rd Attempt - HIGH FIVE!
A			
B			
C			
D			
Total Points			

3 Strikes Yer Out Rules

1) Each worksheet has 1-3 problems. After you are done, bring up the one you finished for grading.
2) You must work together so that each group member is at the same pace.
**Note: Hitchhiking is illegal in Calculus!!"*
3) When your whole group is finished with the worksheet, one person should bring $A L L$ worksheets to check with me. Bring your score sheet with you!!
4) Scoring:

- If your group gets $A L L$ problems correct the first time, you will receive 3 points (to be written on the score sheet).
- Otherwise, you will have to take your sheet, go back, and correct them....on the second time, you will receive 2 points.
-on the third time...it's a HIGH FIVE FOR YOU!!

Good Luck!!

