

3 Strikes Yer Out!

Group Members:

1. $\lim _{x \rightarrow-2} \frac{x^{2}+1}{3 x^{2}-2 x+5}$
2. $\lim _{x \rightarrow 0} \frac{\sin 2 x}{3 x}=\lim _{x \rightarrow 0} \frac{\frac{2}{3} \sin 2 x}{\frac{2}{3} \cdot 3 x}$

$$
=\frac{(-2)^{2}+1}{3(-2)^{2}-2(-2)+5}=\frac{5}{21}
$$

$=\frac{2}{3} \lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x}=\frac{2}{3}$
3. $\lim _{x \rightarrow 0}\left(e^{x} \sin x\right)=e^{0} \cdot \sin 0$
4. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{2 x^{2}-x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{(2 x+1)(x-1)}$

$$
=1 \cdot 0=0
$$

$=\lim _{x \rightarrow 1} \frac{x+1}{2 x+1}=\frac{2}{3}$
5. $\lim _{x \rightarrow 0} \frac{\tan x}{x}=\lim _{x \rightarrow 0} \frac{\frac{\sin x}{\cos x}}{x}$
6. $\lim _{x \rightarrow 4} \sqrt{1-2 x}=\sqrt{1-2(y)}=\sqrt{-7}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x}=\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \operatorname{lin}_{x \rightarrow 0} \frac{1}{\cos x} \\
& =1 \cdot 1=1
\end{aligned}
$$

\qquad

1. $\lim _{x \rightarrow-\infty} \frac{2 x^{2}+3}{5 x^{2}+7}=\lim _{x \rightarrow-\infty} \frac{2 x^{2}}{5 x^{2}}$
2. $\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=\square$

$$
=\frac{2}{5}
$$

3. $\lim _{x \rightarrow \infty} \frac{x^{3}-4 x^{2}+3 x+3}{x-3}$
4. $\lim _{x \rightarrow-\infty} \frac{5-x^{4}}{x^{3}+2}=\lim _{x \rightarrow-\infty} \frac{-x^{4}}{x^{3}}$

$$
=\lim _{x \rightarrow \infty} \frac{x^{3}}{x}=\lim _{x \rightarrow \infty} x^{2}=\infty
$$

$=\lim _{x \rightarrow-\infty}-x=\infty$
5. Find the vertical asymptote (s) and use limits to describe the behavior to the left and right of the asymptote (s).

$$
f(x)=\frac{x+3}{2-x}
$$

V.A. $: x=2$

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{+}} f(x)=-\infty \\
& \lim _{x \rightarrow 2^{-}} f(x)=\infty
\end{aligned}
$$

6. Find a right and left end behavior model for the function.

$$
f(x)=-3 x+e^{x}
$$

R.E.B.m.: e^{x}
L. E.B.m: $-3 x$

1. What are the 4 different types of discontinuity?

Infinite, removable, jump, oscillating.
2. Find all discontinuities of the function and give what type each is:

$$
f(x)=\frac{5 x^{2}-13 x-6}{3 x^{2}-5 x-12}=\frac{(5 x+2)(x-3)}{(3 x+4)(x-3)}
$$

Infinite disc. $: x=\frac{-4}{3}$
Remove disc.: $x=3$
3. Is the function continuous or not? Explain why or why not.

$$
f(x)= \begin{cases}x^{2}+5, x \geq 1 & \lim _{x \rightarrow 1^{+}} f(x)=6 \\ 12 x-5, x<1 & \lim _{x \rightarrow 1^{-}} f(x)=7\end{cases}
$$

Not continues, since $\lim _{x \rightarrow 1} f(x)$ $\partial N \varepsilon$.
4. Find the value (s) of " c " such that $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=2$.

$$
f(x)=\left\{\begin{array}{l}
c^{2} x+5, x \geq 2 \\
x+8, x<2
\end{array}\right.
$$

$$
c \cdot 2+s=
$$

$$
2 c^{2}+5=10
$$

$$
2 c^{2}=5
$$

$$
c= \pm \sqrt{\frac{5}{2}}
$$

1. Find the average rate of change of $f(x)=x^{3}+2$ over [2,5]. $3 \frac{39}{\frac{117}{27}}$

$$
\begin{aligned}
\text { avg. rate of change } & =\frac{f(5)-f(2)}{5-2}=\frac{127-10}{3}=\frac{117}{3} \\
& =39
\end{aligned}
$$

2. Find the slope of the curve $f(x)=\frac{1}{1-x}$ at $\mathrm{x}=4$.

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(4+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{-3-h}{}+\frac{1}{13}}{h}=\lim _{h \rightarrow 0} \frac{\frac{3+-3-h}{3(-3-h)}}{h} \\
= & \lim _{h \rightarrow 0} \frac{\frac{-h}{3(-3-h)}}{h}=\lim _{h \rightarrow 0} \frac{-1}{3(-3-h)}=\frac{-1}{-9}=\frac{1}{9}
\end{aligned}
$$

3. Find the equation of the normal line of $f(x)=x^{2}+3 x+5$ at $\mathrm{x}=-2$.

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(-2+h)-f(-2)}{h}=\lim _{h \rightarrow 0} \frac{(-2+h)^{2}+3(-2+h)+5-3}{h} \\
= & \lim _{h \rightarrow 0} \frac{4\left(-4 h+h^{2}-h+3 h+5-5\right.}{h}=\lim _{h \rightarrow 0} \frac{h^{2}-h}{h}
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{h(h-1)}{h}=-1 \quad \begin{aligned}
& m=1 \in \text { normal } \\
& \text { Names: }
\end{aligned}
$$

\qquad
\qquad
\qquad

Worksheet	1st Attempt - 3 points	$2^{\text {nd }}$ Attempt - 2 points	$3^{\text {rd }}$ Attempt - HIGH FIVE!
A			
B			
C			
D			
Total Points			

3 Strikes Yer Out Rules

1) Each worksheet has 3-6 problems. After you are done, bring up the one you finished for grading.
2) You must work together so that each group member is at the same pace.
Note: Hitchhiking is illegal in Calculus!!
3) When your whole group is finished with the worksheet, one person should bring ALL worksheets to check with me. Bring your score sheet with you!!
4) Scoring:

- If your group gets $A L L$ problems correct the first time, you will receive 3 points (to be written on the score sheet).
- Otherwise, you will have to take your sheet, go back, and correct them....on the second time, you will receive 2 points.
-on the third time...it's a HIGH FIVE FOR YOU!!

Good Luck!!

