Some 8.1 and 8.2 AP Problems

1997 MC#8,9

A bug begins to crawl up a vertical wire at time t = 0. The velocity v of the bug at time t, $0 \le t \le 8$, is given by the function whose graph is shown above. At what value of t does the bug change direction?

the function whose	Simpli is sin			
At what value of t	does the bu	g change direction	n?	
A) 2	B) 4	C) 6	D) 7	E) 8

What is the total	distance the bug	traveled from	t = 0 to $t = 8$?	
A) 14	B) 13	C) 11	D) 8	E) 6

1997 MC#16

The area of the region enclosed by the graph of $y = x^2 + 1$ and the line y = 5 is

A) $\frac{14}{3}$	B) $\frac{16}{3}$	C) $\frac{28}{3}$	D) $\frac{32}{3}$	E) 8π
U U	•	U U	U U	

1997 MC#83

What is the area of	the region in the	e first quadrant	enclosed by th	e graphs of	$y = \cos x$, $y = x$, and the y-axis	;?
A) 0.127	B) 0.385	C) 0.400	D) 0.600	E) 0.947		

1997 MC #87

At time $t \ge 0$, the acceleration of a particle moving on the x-axis is $a(t) = t + \sin t$. At t = 0, the velocity of the particle is -2. For what value of t will the velocity of the particle be zero? A) 1.02 B) 1.48 C) 1.85 D) 2.81 E) 3.14 1997 FR#3

- Let f be the function given by $f(x) = \sqrt{x-3}$.
 - a) On the axes provided below, sketch the graph of f and shade the region R enclosed by the graph of f, the x-axis, and the vertical line x = 6.

b) Find the area of the region R described in part a).

c) Rather than using the line x = 6 as in part a), consider the line x = w, where w can be any number greater than 3. Let A(w) be the area of the region enclosed by the graph of f, the x-axis, and the vertical line x = w. Write an integral expression for A(w).

d) Let A(w) be described in part c). Find the rate of change of A with respect to w when w = 6.

- Let R be the region bounded by the x-axis, the graph of $y = \sqrt{x}$, and the line x = 4.
 - a) Find the area of region R.

b) Find the value of *h* such that the vertical line x = h divides the region R into two regions of equal area.

The shaded region, R, is bounded by the graph of $y = x^2$ and the line y = 4, as shown in the figure above. a) Find the area of R

Let R be the shaded region in the first quadrant enclosed by the graphs of $y = e^{-x^2}$, $y = 1 - \cos x$, and the y-axis, as shown in the figure above.

a) Find the area of the region R.

Let R and S be the regions in the first quadrant shown in the figure above. The region R is bounded by the x-axis and the graphs of $y = 2 - x^3$ and $y = \tan x$. The region S is bounded by the y-axis and the graphs of $y = 2 - x^3$ and $y = \tan x$.

a) Find the area of R.

b) Find the area of S.

2002 FR#1a

Let f and g be the functions given by $f(x) = e^x$ and $g(x) = \ln x$.

a) Find the area of the region enclosed by the graphs of f and g between $x = \frac{1}{2}$ and x = 1.