

A bug begins to crawl up a vertical wire at time $t=0$. The velocity v of the bug at time $t, 0 \leq t \leq 8$, is given by the function whose graph is shown above.
At what value of t does the bug change direction?
A) 2
B) 4
C) 6
D) 7
E) 8

What is the total distance the bug traveled from $t=0$ to $t=8$?
A) 14
B) 13
C) 11
D) 8
E) 6

1997 MC\#16

The area of the region enclosed by the graph of $y=x^{2}+1$ and the line $y=5$ is
A) $\frac{14}{3}$
B) $\frac{16}{3}$
C) $\frac{28}{3}$
D) $\frac{32}{3}$
E) 8π

1997 MC\#83
What is the area of the region in the first quadrant enclosed by the graphs of $y=\cos x, y=x$, and the y-axis?
A) 0.127
B) 0.385
C) 0.400
D) 0.600
E) 0.947

1997 MC \#87
At time $t \geq 0$, the acceleration of a particle moving on the x -axis is $a(t)=t+\sin t$. At $t=0$, the velocity of the particle is -2 . For what value of t will the velocity of the particle be zero?
A) 1.02
B) 1.48
C) 1.85
D) 2.81
E) 3.14

Let f be the function given by $f(x)=\sqrt{x-3}$.
a) On the axes provided below, sketch the graph of f and shade the region R enclosed by the graph of f, the x -axis, and the vertical line $x=6$.

b) Find the area of the region R described in part a).
c) Rather than using the line $x=6$ as in part a), consider the line $x=w$, where w can be any number greater than 3. Let $A(w)$ be the area of the region enclosed by the graph of f, the x -axis, and the vertical line $x=w$. Write an integral expression for $A(w)$.
d) Let $A(w)$ be described in part c). Find the rate of change of A with respect to w when $w=6$.

1998 FR\#1a,b

Let R be the region bounded by the x -axis, the graph of $y=\sqrt{x}$, and the line $x=4$.
a) Find the area of region R.
b) Find the value of h such that the vertical line $x=h$ divides the region R into two regions of equal area.

1999 FR \#2a

The shaded region, R , is bounded by the graph of $y=x^{2}$ and the line $y=4$, as shown in the figure above.
a) Find the area of R

Let R be the shaded region in the first quadrant enclosed by the graphs of $y=e^{-x^{2}}, y=1-\cos x$, and the y axis, as shown in the figure above.
a) Find the area of the region R.

Let R and S be the regions in the first quadrant shown in the figure above. The region R is bounded by the x -axis and the graphs of $y=2-x^{3}$ and $y=\tan x$. The region S is bounded by the y -axis and the graphs of $y=2-x^{3}$ and $y=\tan x$.
a) Find the area of R.
b) Find the area of S.

2002 FR\#1a

Let f and g be the functions given by $f(x)=e^{x}$ and $g(x)=\ln x$.
a) Find the area of the region enclosed by the graphs of f and g between $x=\frac{1}{2}$ and $x=1$.

