AP Calculus AB
First Semester Review

Name
NO CALC/LATYR ALLOWED!!

Section I, Part A
Directions: Solve each of the following problems. After examining the form of the choices, decide which is the best of the choices given and circle your answer choice.

In this test: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which $f(x)$ is a real number.

1. What is the x-coordinate of the point of inflection on the graph of $y=\frac{1}{3} x^{3}+5 x^{2}+24$?
(A) 5
(B) 0
(C) $-\frac{10}{3}$
(D) -5
(E) -10

$$
\begin{gathered}
y^{\prime}=x^{2}+10 x \\
y^{\prime \prime}=2 x+10 \\
x=-5
\end{gathered}
$$

2. If $x^{2}+x y=10$, then when $x=2, \frac{d y}{d x}=$
(A) $-\frac{7}{2}$
(B) -2
(C) $\frac{2}{7}$
(D) $\frac{3}{2}$
(E) $\frac{7}{2}$

$$
\begin{aligned}
4+2 y & =10 \\
y & =3
\end{aligned}
$$

$$
\begin{array}{r}
2 x+x \frac{d y}{d x}+y=0 \\
4+2 \frac{d y}{d x}+3=0 \\
\frac{d y}{d x}=\frac{-7}{2}
\end{array}
$$

3. Let f and g be differentiable functions with the following properties:
(i) $g(x)>0$ for all x
(ii) $f(0)=1$

If $h(x)=f(x) g(x)$ and $h^{\prime}(x)=f(x) g^{\prime}(x)$, then $f(x)=$
(A) $f^{\prime}(x)$
(B) $g(x)$
(C) e^{x}
(D) 0
$\begin{aligned} h^{\prime}(x) & =f(x) g^{\prime}(x)+g(x) f \\ & \therefore g(x) f^{\prime}(x)=0\end{aligned}$
$\therefore f^{\prime}(x)=0$ so
$f(x)$ is
4. What is the instantaneous rate of change at $x=2$ of the function f given by $f(x)=\frac{x^{2}-2}{x-1}$?

$$
\begin{aligned}
f^{\prime}(x) & \text { (B) } \frac{1}{6}-\frac{\left(\text { (C) } \frac{1}{2}\right.}{(x-1)^{2}}=\frac{\left(x^{2}-2\right)}{(x-1)^{2}}=\frac{(\text { (D) } 2}{}+2 \\
& =\frac{x^{2}-2 x+2}{(x-1)^{2}}
\end{aligned}
$$

5. If $f(x)=\left\{\begin{array}{cc}\ln x & \text { for } 0<x \leq 2 \\ x^{2} \ln 2 & \text { for } 2<x \leq 4,\end{array}\right.$ then $\lim _{x \rightarrow 2} f(x)$ is
(A) $\ln 2$
(B) $\ln 8$
(C) $\ln 16$
(D) 4
(E) nonexistent
$\lim _{x \rightarrow 2^{-}} f(x)=\ln 2$
$\lim _{x \rightarrow 2^{+}} f(x)=4 \ln 2$
6. The graph of the function f shown in the figure below has a vertical tangent at the point $(2,0)$ and horizontal tangents at the points $(1,-1)$ and $(3,1)$. For what values of $x,-2<x<4$, is f not differentiable?

(A) 0 only
(B) 0 and 2 only
(C) 1 and 3 only
(D) 0,1 , and 3 only
(E) $0,1,2$, and 3
7. A particle moves along the x-axis so that its position at time t is given by $x(t)=t^{2}-6 t+5$. For what value of t is the velocity of the particle zero?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

$$
v(t)=2 t-6=0
$$

$$
t=3
$$

8. If $f(x)=\sin \left(e^{-x}\right)$, then $f^{\prime}(x)=$
(A) $-\cos \left(e^{-x}\right)$
(B) $\cos \left(e^{-x}\right)+e^{-x}$
(C) $\cos \left(e^{-x}\right)-e^{-x}$
(D) $e^{-x} \cos \left(e^{-x}\right)$
(E) $-e^{-x} \cos \left(e^{-x}\right)$
$f^{\prime}(x)=\cos \left(e^{-x}\right) e^{-x}(-1)$
9. The graph of a twice-differentiable function f is shown in the figure below. Which of the following is true?

(A) $f(1)<f^{\prime}(1)<f^{\prime \prime}(1)$
(B) $f(1)<f^{\prime \prime}(1)<f^{\prime}(1)$
(C) $f^{\prime}(1)<f(1)<f^{\prime \prime}(1)$
(D) $f^{\prime \prime}(1)<f(1)<f^{\prime}(1)$
(E) $f^{\prime \prime}(1)<f^{\prime}(1)<f(1)$
$f(x)$ is increasing, so $f^{\prime}(x)>0$
$f(x)$ is concave down, so $f^{\prime \prime}(x)<0$
10. An equation of the line tangent to the graph of $y=x+\cos x$ at the point $(0,1)$ is

$$
\begin{array}{ll}
y^{\text {(A) } y=2 x+1} \quad \text { (B) } y=x+1 & \text { (C) } y=x \\
y_{x=0}^{\prime}=1-\sin x & y=x+1
\end{array}
$$

(D) $y=x-1$
(E) $y=0$
11. If $f^{\prime \prime}(x)=x(x+1)(x-2)^{2}$, then the graph of f has inflection points when $x=$
(A) - 1 only
(B) 2 only
(C) - 1 and 0 only
(D) -1 and 2 only
(E) $-1,0$, and 2 only

12. The function f is given by $f(x)=x^{4}+x^{2}-2$. On which of the following intervals is f increasing?
(A) $\left(-\frac{1}{\sqrt{2}}, \infty\right)$
(B) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
(C) $(0, \infty)$
(D) $(-\infty, 0)$
(E) $\left(-\infty,-\frac{1}{\sqrt{2}}\right)$

$$
\begin{gathered}
f^{\prime}(x)=4 x^{3}+2 x \\
2 x\left(2 x^{2}+1\right)=0 \\
x=0
\end{gathered}
$$

13. The maximum acceleration attained on the interval $0 \leq t \leq 3$ by the particle whose velocity is given by $v(t)=t^{3}-3 t^{2}+12 t+4$ is To
$\begin{array}{ll}\text { (A) } 9 \\ a(t)=3 t^{2}-6 t+12\end{array}$

$$
\begin{gathered}
a^{\prime}(t)=6 t-6=0 \\
t=1
\end{gathered}
$$

(C) 14
(D) 21
(E) 40
14. The graph of f is shown in the figure below. Which of the following could be the graph of the
derivative of f ?

$$
f^{\prime}(x)>0 \text { (x) }
$$

(A)

(D)

(B)

(E)

(C)

15. The function f is continuous on the closed interval $[0,2]$ and has values that are given in the table below. The equation $f(x)=\frac{1}{2}$ must have at least two solutions in the interval [0, 2] if $k=$

x	0	1	2
$f(x)$	1	k	2

(A) 0
(B) $\frac{1}{2}$
(C) 1
(D) 2
(E) 3
 K must be less than $\frac{1}{2}$
16. If $f(x)=\tan (2 x)$, then $f^{\prime}\left(\frac{\pi}{6}\right)=$
(A) $\sqrt{3}$
(B) $2 \sqrt{3}$
(C) 4
(D) $4 \sqrt{3}$
(E) 8

$$
\begin{aligned}
f^{\prime}(x) & =\sec ^{2}(2 x) \cdot 2 \\
f^{\prime}\left(\frac{\pi}{6}\right) & =2 \sec ^{2}\left(\frac{\pi}{3}\right) \\
& =2 \cdot 2^{2}
\end{aligned}
$$

AP Calculus AB
First Semester Review

A GRAPHING CALCULATOR IS REQUIRED FOR SOME QUESTIONS ON THIS PART OF THE EXAMINATION.

In this test: The exact numerical value of the correct answer does not always appear among the choices given. When this happens, select from among the choices the number that best approximates the exact numerical value.

1. The graph of a function f is shown below. Which of the following statements about f is false?

(A) f is continuous at $x=a$.
(B) f has a relative maximum at $x=a$.
(C) $x=a$ is in the domain of f.
(D) $\lim _{x \rightarrow a^{+}} f(x)$ is equal to $\lim _{x \rightarrow a^{-}} f(x)$.
(E) $\lim _{x \rightarrow a} f(x)$ exists.
2. Let f be the function given by $f(x)=3 e^{2 x}$ and let g be the function given by $g(x)=6 x^{3}$. At what value of x do the graphs of f and g have parallel tangent lines?
(A) -0.701
(B) -0.567
(C) -0.391
(D) -0.302
(E) -0.258

$$
f^{\prime}(x)=g^{\prime}(x)
$$

3. The radius of a circle is decreasing at a constant rate of 0.1 centimeter per second. In terms of the circumference C, what is the rate of change of the area of the circle, in square centimeters per second?
(A) $-(0.2) \pi C$
(B) $-(0.1) C$
(C) $-\frac{(0.1) C}{2 \pi}$
(D) $(0.1)^{2} C$
(E) $(0.1)^{2} \pi C$

$$
\frac{d r}{d t}=-1 \mathrm{~cm} / \mathrm{sec}
$$

$$
\begin{aligned}
A & =\pi r^{2} \\
\frac{d A}{d t} & =2 \pi r \frac{d x}{d t} \\
& =C(-0.1)
\end{aligned}
$$

4. The graphs of the derivatives of the functions f, g, and h are shown below. Which of the functions f, g, or h have a relative maximum on the open interval $a<x<b$?

(A) f only
(B) g only
(C) h only
(D) f and g only
(E) f, g, and h
5. The first derivative of the function f is given by $f^{\prime}(x)=\frac{\cos ^{2} x}{x}-\frac{1}{5}$. How many critical values does f have on the open interval $(0,10)$?
(A) One
(B) Three
(C) Four
(D) Five
(E) Seven

$$
f^{\prime}(x)=0
$$

6. Let f be the function given by $f(x)=|x|$. Which of the following statements about f are true?
I. f is continuous at $x=0$.
II. f is differentiable at $x=0$.
T III. f has an absolute minimum at $x=0$.
(A) I only
(B) II only
(C) III only
(D) I and III only
(E) II and III only
7. If $a \neq 0$, then $\lim _{x \rightarrow a} \frac{x^{2}-a^{2}}{x^{4}-a^{4}}$ is
(A) $\frac{1}{a^{2}}$

(C) $\frac{1}{6 a^{2}}$
(D) 0
(E) nonexistent
$\lim _{x \rightarrow a} \frac{x^{2}-a}{\left(x^{2}-a^{2}\right)\left(x^{2}+a^{2}\right)}=\lim _{x \rightarrow a}$
$\frac{1}{x^{2}+a^{2}}=\frac{1}{2 a^{2}}$
8. Which of the following is an equation of the line tangent to the graph of $f(x)=x^{4}+2 x^{2}$ at the point where $f^{\prime}(x)=1$?

(D) $y=8 x-5$
$f^{\prime}(x)=x-0.122$
(D) $y=4 x^{3}+4 x=1$
$x \approx 0.237$
(B) $y=x+7$
(E) $y=x-2.146$
(C) $y=x+0.763$
9. If g is a differentiable function such that $g(x)<0$ for all real numbers x and if $f^{\prime}(x)=\left(x^{2}-4\right) g(x)$, which of the following is true?
(A) f has a relative maximum at $x=-2$ and a relative minimum at $x=2$.
(B) f has a relative minimum at $x=-2$ and a relative maximum at $x=2$.
(C) f has a relative minima at $x=-2$ and at $x=2$.
(D) f has a relative maxima at $x=-2$ and at $x=2$.
(E) It cannot be determined if f has any relative extrema.

$$
f^{\prime}(x)=(x-2)(x+2) g(x)
$$

10. If the base b of a triangle is increasing at a rate of 3 inches per minute while its height h is decreasing at a rate of 3 inches per minute, which of the following must be true about the area A of the triangle?
(A) A is always increasing.
(C) A is decreasing only when $b<h$.
(E) A remains constant.
$\frac{d A}{d t}=\frac{1}{2}\left(b \frac{d h}{d t}+h \frac{d b}{d t}\right)$
$=\frac{1}{2}(-3 b+3 h)$
(B) A is always decreasing.
(D) is decreasing only when $b>h$.
 $\frac{a A}{a t}<0$ when $b>h$
11. Let f be a function that is differentiable on the open interval $(1,10)$. If $f(2)=-5, f(5)=5$, and $f(9)=-5$, which of the following must be true?
T I. f has at least 2 zeros.
TII. The graph of f has at least one horizontal tangent.
T III. For some $c, 2<c<5, f(c)=3$.
(A) None
(B) I only
(C) I and II only
(D) I and III only
(E) I II, and III

AP Calculus AB
First Semester Review

A GRAPHING CALCULATOR IS REQUIRED FOR SOME QUESTIONS ON THIS PART OF THE EXAMINATION.

SHOW ALL YOUR WORK. YOU WILL BE GRADED ON THE CORRECTNESS AND COMPLETENESS OF YOUR METHODS AS WELL AS THE ACCURACY OF YOUR FINAL ANSWERS. CORRECT ANSWERS WITHOUT SUPPORTING WORK MAY NOT RECEIVE CREDIT. IF YOUR ANSWER IS GIVEN AS A DECIMAL APPROXIMATION, IT SHOULD BE CORRECT TO THREE PLACES AFTER THE DECIMAL POINT.

1. Let f be the function given by $f(x)=2 x e^{2 x}$.
(a) Find $\lim _{x \rightarrow-\infty} f(x)$ and $\lim _{x \rightarrow \infty} f(x)$.

$$
\lim _{x \rightarrow-\infty} f(x)=0
$$

$$
\lim _{x \rightarrow \infty} f(x)=\infty
$$

(b) Find the absolute minimum value of f. Justify that your answer is an absolute minimum.

(d) Consider the family of functions defined by $f(x)=b x e^{b x}$, where b is a nonzero constant. Show that the absolute minimum value of $b x e^{b x}$ is the same for all nonzero values of b.

$$
\begin{aligned}
f^{\prime}(x) & =b x e^{b x} \cdot b+e^{b x} \cdot b \\
& =b e^{b x}(b x+1) \\
f^{\prime}(x) & =0 \text { when } x=-\frac{1}{b}
\end{aligned}
$$

$$
\frac{f^{\prime}(x)+}{-\frac{1}{6}}
$$

Where is an ate. mix
value at $x=\frac{-1}{b}$ since $f^{\prime}(x)$ charges gionemg
to pas att $x=\frac{1}{0}$ enc
rely critical undue. $f^{\prime}(x)$ charges goon the
to ens at $x=\frac{1}{b}$, ta
rely critical urine.

$$
f\left(-\frac{1}{b}\right)=-e^{-1}
$$ \therefore Aharluter mir value is $\frac{-1}{e}$

2. Let f be a function with $f(1)=4$ such that for all points (x, y) on the graph of f the slope is given by $\frac{3 x^{2}+1}{2 y}$.
(a) Find the slope of the graph of f at the point where $x=1$. slope of f at $x=1$:

$$
f^{\prime}(1)=\frac{3 \cdot 1+1}{2 \cdot 4}=\frac{1}{2}
$$

(b) Write an equation for the line tangent to the graph of f at $x=1$ and use it to approximate $f(1.2)$.

$$
\begin{aligned}
& y-4=\frac{1}{2}(x-1) \\
& \begin{aligned}
& y=\frac{1}{2} x+3 \frac{1}{2} \\
& f(1.2) \approx \frac{1}{2}(1.2)+3.5 \\
&=0.6+3.5 \\
&=4.1
\end{aligned}
\end{aligned}
$$

3. The graph of the velocity $v(t)$, in $\mathrm{ft} / \mathrm{sec}$ of a car traveling on a straight road, for $0 \leq t \leq 50$, is shown below. A table of values for $v(t)$, at 5 second intervals of time t, is shown to the right of the graph.

t (seconds)	$v(t)$ (feet per second)
0	0
5	12
10	20
15	30
20	55
25	70
30	78
35	81
40	75
45	60
50	72

(a) During what intervals of time is the acceleration of the car positive? Five a reason for your answer.
ONe acceluation io positive ore $(0,35)$ and (45,50). Chis is License the acceleration is praithive when the velocity is
(b) Find the average acceleration of the car, in $\mathrm{ft} / \mathrm{sec}^{2}$, over the interval $0 \leq t \leq 50$.

$$
\begin{aligned}
\text { as ace } & =\frac{72-0}{50-0} \\
& =1.44 \mathrm{ft} / \mathrm{sec}^{2}
\end{aligned}
$$

(c) Find one approximation for the acceleration of the car, in $\mathrm{ft} / \mathrm{sec}^{2}$, at $t=40$. Show the computations you used to arrive at your answer.

$$
\begin{aligned}
& \text { OR } \quad a(40) \approx \frac{r(45)-v(40)}{45-40}=\frac{60-75}{5}=-3 \mathrm{ft} / \mathrm{sec}^{2} \\
& \text { ore } \quad a(40) \approx \frac{r(40)-v(35)}{40-35}=\frac{25-81}{5}=-1,2 \mathrm{ft} / \mathrm{sec}^{2}
\end{aligned}
$$

4. Consider the curve defined by $2 y^{3}+6 x^{2} y-12 x^{2}+6 y=1$.
(a) Show that $\frac{d y}{d x}=\frac{4 x-2 x y}{x^{2}+y^{2}+1}$.
$6 y^{2} \frac{a y}{d x}+6 x^{2} \frac{b y}{d x}+y \cdot 12 x-24 x+6 \frac{a y}{d x}=0$

$$
\frac{d y}{d x}\left(6 y^{2}+6 x^{2}+6\right)=24 x-12 x y
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{6(4 x-2 x y)}{6\left(x^{2}+y^{2}+1\right)} \\
& \frac{d y}{d x}=\frac{4 x-2 x y}{x^{2}+y^{2}+1}
\end{aligned}
$$

(b) Write an equation of each horizontal tangent line to the curve.

$$
\begin{array}{cc}
\left.\frac{d y}{d x}=0 \quad \text { when } \begin{array}{ll}
& 4 x-2 x y=0 \\
& 2 x(2-y)=0 \\
& x=0, y=2 \\
2 y^{3}+6 y=1 & \\
y \approx 0.165 & \\
y=0.165 &
\end{array}\right)
\end{array}
$$

$$
\begin{gathered}
y=2 \\
16+12 x^{2}-12 x^{2}+12=1
\end{gathered}
$$

$$
28=1
$$

$$
y \neq 2
$$

(c) The line through the origin with slope -1 is tangent to the curve at point P. Find the x - and y coordinates of point P.
$y=-x$ is tangent to curve at P.

$$
\text { from (a): } \begin{aligned}
& \frac{4 x-2 x y}{x^{2}+y^{2}+1}=-1 \\
& 4 x-2 x y=-x^{2}-y^{2}-1 \\
& 4 x-2 x-x)=-x^{2}-(-x)^{2}-1 \\
& 4 x+2 x^{2}=x^{2}-x^{2}-1 \\
& 4 x^{2}+4 x-1=0 \\
& (2 x-1)^{2}=0 \\
& x=\frac{1}{2} \quad \Rightarrow y=-\frac{1}{2} \quad\left(\frac{1}{2},-\frac{1}{2}\right)
\end{aligned}
$$

