\qquad
First Semester Review \#1

YOU MUST SHOW ALL WORK TO RECEIVE CREDIT!!

1. The graph of $y=3 x^{2}-x^{3}$ has a relative maximum at
(A) $(0,0)$ only
(B) $(1,2)$ only
(C) $(2,4)$ only
(D) $(4,-16)$ only
(E) $(0,0)$ and $(2,4)$

$$
y(2)=3 \cdot 2^{2}-2^{3}=4
$$

y has a relative max of 4 when $x=2$ because y ' changes sign from pos to ne y
$(2,4)$
2. If $f(x)=\frac{x^{2}-9}{x+3} \boldsymbol{X} \mathbf{- 3}$

$$
\begin{aligned}
& f(x)=\frac{(x+3)(x-3)}{x-3}
\end{aligned}
$$

(B) -3
(C) 0
(D) 6
(E) -6

$$
f(x)=x-3
$$

$$
\begin{aligned}
f(-3) & =-3-3 \\
& =-6
\end{aligned}
$$

3. $\lim _{x \rightarrow \infty} \frac{10^{8} x^{5}+10^{6} x^{4}+10^{4} x^{2}}{10^{9} x^{6}+10^{7} x^{5}+10^{5} x^{3}}=$
(A) 0
(B) 1
(C) -1
(D) $\frac{1}{10}$
(E) $-\frac{1}{10}$

THE MODEL FOR FUNCTION

$$
y=\frac{10^{8} x^{5}}{10^{9} x^{6}}
$$

MODELS THE
END B BEHAVIOR
OF OUR FUNCTION OF OUR FUNCTION

$$
\frac{1}{10} \lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

4. The equation of the tangent line to the curve $x^{2}+y^{2}=169$ at the point $(5,-12)$ is
(A) $5 y-12 x=-120$
(B) $5 x-12 y=119$
(e) $5 x-12 y=169$
(D) $12 x+5 y=0$
(E) $12 x+5 y=169$

$$
\begin{aligned}
& 2 x+2 y \cdot \frac{d y}{d x}=0
\end{aligned}
$$

5. If $e^{y}=\underbrace{x, \text { then } \frac{d y}{d x}}=$
(A) 1
(B) $\frac{1}{x}$
(C) $\frac{1}{y}$
(D) $\ln x$
(E) $\ln y$

$$
\left\{\begin{array}{l}
e^{y}=x \\
e^{y} \cdot \frac{d y}{d x}=1 \\
\frac{d y}{d x}=\frac{1}{e^{y}} \\
\frac{d y}{d x}=\frac{1}{x}
\end{array}\right.
$$

6. If $f(x)=\frac{(\ln x)^{2}}{2}$, then $f^{\prime}(e)=$
(A) e^{2}
(B) $\frac{1}{e}$
(C) $\frac{1}{e^{2}}$
(D) e
(F) 0

$$
\begin{aligned}
& f^{\prime}(x)=\frac{2 \ln x}{2} \cdot \frac{1}{x} \\
& f^{\prime}(x)=\frac{\ln x}{x} \\
& f^{\prime}(e)=\frac{\ln e}{e} \\
& f^{\prime}(e)=\frac{1}{e}
\end{aligned}
$$

7. If the graph of $f(x)=2 x^{2}+\frac{k}{x}$ has a point of inflection at $x=-1$, then the value of k is
(A) 1
(B) -1
(C) 2
(D) -2

(E) 0
8. If $f(x)=3 x^{2}-8 x^{-2}$, then $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=f^{\prime}(2)$
(A) 10
(B) 14
(C) 20

$$
=14
$$

(D) -14
(E) -20
9. For what values of x is the graph of $y=\frac{2}{4-x}$ concave downward?
(A) No values of x
(B) $x<4$
(C) $x>-4$
(D) $x<-4$
(E) $x>4$

$$
\begin{aligned}
& y^{\prime}=\frac{2}{(4-x)^{2}} \Longrightarrow \frac{d}{d x} 2(4-x)^{-2} \\
& y^{\prime \prime}=\frac{4}{(4-x)^{3}}
\end{aligned}
$$

10. $\frac{d}{d x}\left(e^{3 \ln x}\right)=$

THIS WAY
THIS WAY
(A) $e^{3 \ln x}$
(B) $\frac{e^{3 \ln x}}{x}$
(C) x^{3}
(D) $3 x^{2}$
(F) 3

$C^{C_{1}}$
$\frac{3}{x}$
$\frac{3}{x}$
N OR

$=3 x^{2}$
this way
(

$$
=e^{\ln x^{3}} \cdot \frac{3}{x}
$$

$$
=x^{3} \cdot \frac{3}{x}
$$

()
11. A particle moves along the x-axis in such a way that its position at time t is given by $x(t)=\frac{1-t}{1+t}$. What is the acceleration of the particle at time $t=0$?
(A) $-\frac{3}{5}$

$$
\frac{d x}{d t}=\frac{(1+t)(-1)-(1-t)(1)}{(1+t)^{2}}
$$

(B) -4
(C) 4
(D) 2
(E) -2

12. Let f and g be differentiable functions such that

$$
f(1)=4, g(1)=3, f^{\prime}(3)=-5, f^{\prime}(1)=-4, g^{\prime}(1)=-3, g^{\prime}(3)=2
$$

If $h(x)=f(g(x))$, then $h^{\prime}(1)=$
(A) -9
(B) 15
(C) 0
(D) -5
(E) -12

$$
\begin{aligned}
h^{\prime}(x) & =f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
h^{\prime}(1) & =f^{\prime}(g(1)) \cdot g^{\prime}(1) \\
& =f^{\prime}(3) \cdot-3 \\
& =-5 \cdot-3 \\
& =15
\end{aligned}
$$

13. A point moves along the curve $y=x^{2}+1$ in such a way that when $x=4$, the x-coordinate is increasing at the rate of $5 \mathrm{ft} / \mathrm{sec}$. At what rate is the y-coordinate changing at that time?
(A) $80 \mathrm{ft} / \mathrm{sec}$
(B) $45 \mathrm{ft} / \mathrm{sec}$
(C) $32 \mathrm{ft} / \mathrm{sec}$

$$
\begin{gathered}
\frac{d x}{d t}=s t+/ \text { see } \quad \frac{d y}{d t}=\text { ? when } x=y \\
y=x^{2}+1 \\
\frac{d y}{d t}=2 x \frac{d x}{d t}+0 \\
\frac{d y}{d t}=2(4)(5)=40
\end{gathered}
$$

(D) $85 \mathrm{ft} / \mathrm{sec}$
14. H1, for all values of x
$f^{\prime}(x)<0$ and $f^{\prime \prime}(x)>0$, which of the following curves could be part of the
graph of?
CONCAve L_{p}
(A)

(B)

(C)

(D)

15. If the graph of $f(x)=x^{3}+a x^{2}+b x-8$ has an inflection point at $(2,0)$, what is the value of b ?
(A) 0

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}+2 a x+b \\
& \begin{array}{l}
f(x)=3 x+2 a x+2 a \quad f(x)=x^{3}-6 x^{2}+b x-8
\end{array} \\
& f^{\prime \prime}(x)=00^{\text {whin }} x=2 \quad 6(2)+2 a \begin{array}{r}
(2,0) 0^{15}=0^{3}-6(2)^{2}+b(2)-8
\end{array} \\
& -12=2 a \\
& -6=a \\
& 0=8-24+2 b-8 \\
& 24=2 b \\
& 12=b
\end{aligned}
$$

(B) 4
(C) 8
(D) 12
(E) The value of b cannot be determined from the given information
16. $y=x^{\left(x^{3}\right)}$ for $x>0$, then $\frac{d y}{d x}=$
(A) $x^{3} \cdot x^{\left(x^{3}-1\right)}$
(B) $4 x^{3}$
(C) $x^{2}+3 x^{2} \ln x$
(D) $x^{\left(x^{3}+2\right)}(1+3 \ln x)$
(E) $3 x^{\left(x^{3}+2\right)} \ln x$

$\ln y=\ln x$

$$
\frac{d y}{d x}=y\left(x^{2}+3 x^{2} \ln x\right)
$$

$$
\lesssim \quad \begin{aligned}
& \frac{d y}{d x}=x^{x^{3}}\left(x^{2}+3 x^{2} \ln x\right) \\
& \frac{d y}{d x}=x^{x^{3}} \cdot x^{2}(1+3 \ln x)
\end{aligned}
$$

17. The maximum value of $f(x)=2 x^{3}-9 x^{2}+12 x-1$ on $\left.-1,2\right]$ is
(A) 0

$$
\begin{aligned}
f^{\prime}(x) & =6 x^{2}-18 x+12 \\
& =6\left(x^{2}-3 x+2\right) \\
& =6(x-2)(x-1)
\end{aligned}
$$

(C) 2
(D) 3
(E) 4

A6sinmax at $x=1^{\text {min }}{ }^{2} d$ canse f^{\prime} changs sipr from pos to res. (Enapth wie where minvalees OPTMI 2ATION
18. The shortest distance from the curve $x y=4$ to the origin is
(A) 2
(B) 4
(C) $\sqrt{2}$
(I) $2 \sqrt{2}$ $y=\frac{4}{6}$

(E) $\frac{1}{2} \sqrt{2}$

$$
\begin{aligned}
d & =\sqrt{\left(\frac{4}{x}\right)^{2}+x^{2}} \\
d^{2} & =\frac{16}{x^{2}}+x^{2} \\
\left(d^{2}\right)^{\prime} & =-\frac{32}{x^{3}}+2 x \\
0 & =-\frac{32}{x^{3}}+2 x \\
\frac{32}{x^{3}} & =2 x
\end{aligned}
$$

$$
32=2 x^{4}
$$

$\left(d^{2}\right)$ changes sign fromnegto pos. $d(t)=\sqrt{8}=2 \sqrt{2}$

