1. Let f be twice differentiable for all real numbers.
a. What does this information tell you about f ? Circle the answers) that apply.

b. What does this information tell you about f^{\prime} ? Circle the answers) that apply.

c. What this information tell you about f "? Circle the answers) that apply.
$f^{\prime \prime}$ exists $\quad f^{\prime \prime}$ is differentiable $f^{\prime \prime}$ is continuous
d. Let $f(2)=0$ and $f(6)=12$. What theorem allows you to conclude that there exists a c in the interval $(2,6)$ such that $f(c)=8$?

> The Intermediate value Theorem
e. Let $f(2)=0$ and $f(6)=12$. What theorem allows you to conclude that there exists a c in the interval $(2,6)$ such that $f^{\prime}(c)=3$?

The Mean Value Theorem

2. Let $B(t)$ be a differentiable function given at select values in the table.

t	0	3	5	15
$B(t)$	-2	4	0	6

a. Estimate $B^{\prime}(4)$.

$$
\frac{0-4}{5-3}=\frac{-4}{2}=-2
$$

b. What can you say about $B(10)$?
I. $\quad B(10)>0$
II. $\quad B^{\prime}(10)>0$
III. $\quad B "(10)>0$

I only II only III only I, II, and III

3. If $f(3)=5$ and $f^{\prime}(3)=4$ and $g(x)=f^{-1}(x)$, then
A. $g^{\prime}(3)=\frac{1}{4}$
B. $g^{\prime}(5)=\frac{1}{4}$
C. $g^{\prime}(4)=\frac{1}{5}$
D. $g^{\prime}(5)=\frac{1}{3}$

Remember, horizontal shifts produce equivalent integrals!
4. Write the following limits as integrals.
a. $\lim _{n \rightarrow \infty} \frac{1}{n}\left[\sqrt{\frac{1}{n}}+\sqrt{\frac{2}{n}}+\ldots+\sqrt{\frac{n}{n}}\right]=\int_{0}^{1} \sqrt{x} d x$
b. $\lim _{n \rightarrow \infty}\left(\frac{1}{n}\left(\left(9+\frac{1}{n}\right)^{2}+\left(9+\frac{2}{n}\right)^{2}+\left(9+\frac{3}{n}\right)^{2}+\left(9+\frac{4}{n}\right)^{2}+\ldots \ldots \ldots \ldots+\left(9+\frac{n}{n}\right)^{2}\right)\right)_{0}^{1}(9+x)^{2} d x$
$0 R x^{2} d x$ OR $\int_{9}^{10} x^{2} d x$
c. $\lim _{n \rightarrow \infty}\left(\frac{3}{n}\left(\ln (2)+\ln \left(2+\frac{3}{n}\right)+\ln \left(2+\frac{6}{n}\right)+\ldots \ldots \ldots \ldots+\ln \left(2+\frac{3(n-1)}{n}\right)\right)\right)=\int_{0}^{3} \ln (2+x) d x$

OR $\int_{2}^{5} \ln x d x$
d. $\lim _{n \rightarrow \infty}\left(\frac{7}{n}\left(\sqrt[3]{-2+\frac{7}{n}}+\sqrt[3]{-2+\frac{14}{n}}+\sqrt[3]{-2+\frac{21}{n}}+\sqrt[3]{-2+\frac{28}{n}}+\ldots \ldots \ldots .+\sqrt[3]{-2+\frac{7 n}{n}}\right)\right)=\int_{0}^{7}(-2+x)^{1 / 3} d x$ OR $\int_{-2}^{5} x^{1 / 3} d x$
5. $f(x)$ is graphed below.

$f(x)$ is ... (circle all that apply)
I. continuous everywhere in the interval [-7, 6].
II. differentiable everywhere in the interval $[-7,6]$.
III. continuous, but not differentiable at $x=0$.
IV. continuous and differentiable at $x=2$.
V. not continuous and not differentiable at $x=-5$.

