Name:

- 1. Let f be twice differentiable for all real numbers.
 - a. What does this information tell you about f? Circle the answer(s) that apply.

d. Let f(2) = 0 and f(6) = 12. What theorem allows you to conclude that there exists a *c* in the interval (2,6) such that f(c) = 8?

The Intermediate Value Theorem

e. Let f(2) = 0 and f(6) = 12. What theorem allows you to conclude that there exists a *c* in the interval (2,6) such that f'(c) = 3?

2. Let B(t) be a differentiable function given at select values in the table.

Estimate B'(4).	t	0	3	5	15
	B(t)	-2	4	0	6
	0-4	$\frac{1}{3}$ =	-4 =	: -2	-

- b. What can you say about B(10)?
 - I. B(10) > 0
 - II. B'(10) > 0
 - III. B''(10) > 0

I only

a.

II only III only

I, II, and III

3. If f(3) = 5 and f'(3) = 4 and $g(x) = f^{-1}(x)$, then

A.
$$g'(3) = \frac{1}{4}$$
 B. $g'(5) = \frac{1}{4}$ C. $g'(4) = \frac{1}{5}$ D. $g'(5) = \frac{1}{3}$

5. f(x) is graphed below.

4.

f(x) is ... (circle all that apply)I.I.continuous everywhere in the interval [-7, 6].II.III.continuous, but not differentiable at x = 0.continuous and differentiable at x = 2.V.N.<td