AP Review \#4
1.

a. Let $g(x)=f(3 x)$. Calculate $g^{\prime}(-1)$.

$$
g^{\prime}(x)_{\frac{x}{2}}=f^{\prime}(3 x) \cdot 3
$$

$$
g^{\prime}(-1)=f^{\prime}(-3) \cdot 3=1 \cdot 3=3
$$

b. Let $h(x)=\int_{-10}^{2} f^{\prime}(x) d x$. Calculate $h^{\prime}(8)$.

$$
h^{\prime}(x)^{-10}=f^{\prime}\left(\frac{x}{2}\right) \cdot \frac{1}{2} \quad h^{\prime}(8)=f^{\prime}(4) \cdot \frac{1}{2}=-2 \cdot \frac{1}{2}=-1
$$

c. Let $m(x)=x^{2} f^{\prime}\left(\frac{x}{2}\right)$. Calculate $m^{\prime}(2)$.

$$
\begin{aligned}
& \text { Let } m(x)=x^{2} f^{\prime}\left(\frac{1}{2}\right) \cdot \text { Calculate } m^{\prime}(2) . \\
& m^{\prime}(x)=x^{2} \cdot f^{\prime \prime}\left(\frac{x}{2}\right) \cdot \frac{1}{2}+f^{\prime}\left(\frac{x}{2}\right) \cdot 2 x \quad m^{\prime}(2)=4-1 \frac{1}{2}+1 \cdot 2 \cdot 2 \\
&=2
\end{aligned}
$$

2. Given the graph of f^{\prime}, write an expression for $f(x)$ if $f(3)=11$.

$$
\begin{aligned}
& \int_{3}^{x} f^{\prime}(t) d t=f(x)-f(3) \\
& f(x)=11+\int_{3}^{x} f^{\prime}(t) d t
\end{aligned}
$$

3. Given the graph of f^{\prime}, write an expression for $f(x)$ if $f(-2)=-5$.

$$
\begin{aligned}
& \int_{-2}^{x} f^{\prime}(t) d t=f(x)-f(-2) \\
& f(x)=-5+\int_{-2}^{x} f^{\prime}(t) d t
\end{aligned}
$$

4. Let $g(x)$ be the antiderivative of $f(x)$. If $g(17)=2.301$, write an expression for $g(x)$.

$$
\begin{aligned}
& \int_{17}^{x} f(t) d t=g(x)-g(17) \\
& g(x)=2.301+\int_{17}^{x} f(t) d t
\end{aligned}
$$

5. Let g be the antiderivative of f and let $g(6)=5 . f$ is piecewise defined with line segments and a semicircle.

a. For what interval(s) is g increasing? Justify your answer.

$$
[-3,4] \cup[6,8] \text { because } g^{\prime}=f>0
$$

b. For what intervals) is g concave down? Justify your answer.

$$
(3,5) \cup(7,8) \text { because } g^{\prime \prime}=f^{\prime}<0
$$

c. Write an expression for $g(x)$.

$$
g(x)=5+\int_{6}^{x} f(t) d t
$$

d. Find $g(-3)$.

$$
g(-3)=5+\int_{6}^{-3} f(t) d t=5-9=-4
$$

e. Find $g(3)$.

$$
g(3)=5+\int_{6}^{3} f(t) d t=5+1=6
$$

f. Find $g(8)$.

$$
g(8)=5+\int_{6}^{8} f(t) d t=5+\frac{\pi}{2}
$$

g. Find the absolute maximum value of g. Justify your answer.

x	$g(x)$
-3	-4
4	7
8	$5+\pi / 2$

$$
g(4)=5+\int_{6}^{4} f(t) d t=5+2=7
$$ because $g^{\prime}=f$ changes from $\oplus+\theta$.

