Calc AB Summer packet review #2.

Exponential functions: $f(x) = a^x$ (note: the variable is the <u>exponent</u>)

1. Complete the following rules for exponents:

$$a^{x} \cdot a^{y} = \alpha^{x+y} \qquad \qquad \frac{a^{x}}{a^{y}} = \alpha^{x-y} \qquad (a^{x})^{y} = \alpha^{x} + \beta^{x}$$
$$a^{x} \cdot b^{x} = (a b)^{x} \qquad \qquad \left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}}$$
Remember that these rules can be used in either direction!!

(for example,
$$e^{2x} = (e^x)^2$$
, and $3^{x+2} = 9 \cdot 3^x$)

2. Sketch a graph of $f(x) = 5 + 2^{-x}$. State the domain and range of the function.

3. rewrite each of the following expressions using a base of 2:

b. Find the inverse of the function given in (a) and state the domain and range in interval notation.

χ=	$\log_2 y$	$\hat{z} = y$
	J	

**** Highly recommend you look at the properties of logs in the summer review packet.

State the Domain and Range, in interval notation, of the given function.

