Call AB
Summer packet review \#2.

Exponential functions: $f(x)=a^{x}$ (note: the variable is the exponent)

1. Complete the following rules for exponents:
$a^{x} \cdot a^{y}=a^{x+y}$
$\frac{a^{x}}{a^{y}}=a^{x-y}$
$\left(a^{x}\right)^{y}=a^{x y}$
$a^{x} \cdot b^{x}=(a b)^{x}$
$\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$

Remember that these rules can be used in either direction!!

$$
\text { (for example, } e^{2 x}=\left(e^{x}\right)^{2} \text {, and } 3^{x+2}=9 \cdot 3^{x} \text {) }
$$

2. Sketch a graph of $f(x)=5+2^{-x}$. State the domain and range of the function.

$$
\begin{aligned}
& \text { Domain }(-\infty, \infty) \\
& \text { Range }(5, \infty)
\end{aligned}
$$

3. rewrite each of the following expressions using a base of 2:
a) $32^{3 x}$
b) $\quad\left(\frac{1}{4}\right)^{3 x}$
$\left(2^{5}\right)^{3 x}$

$$
2^{15 x}
$$

$$
\begin{aligned}
& \left(2^{-2}\right)^{3 x} \\
& =2^{-6 x}
\end{aligned}
$$

Solve the given equations:
log wont be on the quiz
7. $\log _{2}\left(2 x^{2}-4\right)=5$
$2^{5}=2 x^{2}-4$
$36=2 x^{2} \quad 18=x^{2} \quad x= \pm \sqrt{18}$
8. $\ln (x+1)=2+\ln (x-1)$
$\ln (x+1)-\ln (x-1)=2$
$\ln \frac{x+1}{x-1}=2$
9. a. state the domain and range of $y=\log _{2} x$ in interval notation:

$$
\begin{aligned}
& D:(0, \infty) \\
& \text { R: }(-\infty, \infty)
\end{aligned}
$$

$$
\int \begin{aligned}
& e^{2}=\frac{x+1}{x-1} \\
& e^{2} x-e^{2}=x+1 \\
& e^{2} x-x=1+e^{2}
\end{aligned}
$$

$$
x\left(e^{2}-1\right)=1+e^{2}
$$

$$
x=\frac{1+e^{\alpha}}{e^{2}-1}
$$

b. Find the inverse of the function given in (a) and state the domain and range in interval notation.

$$
x=\log _{2} y \quad z^{x}=y
$$

**** Highly recommend you look at the properties of logs in the summer review packet.

State the Domain and Range, in interval notation, of the given function.
10. $y=|x|-2$
11. $y=\sqrt{16-x^{2}}$

D' $(-\infty, \infty)$
D. $E-4,4]$
R. $[-2, \infty)$
R. $[0,4]$
12.

D. $(-4,4]$

$$
\text { R: }[-2] \cup[-1,3)
$$

13. Find the inverse of $g(x)$ and $f(x)$:
finding f^{-1}

$$
\begin{aligned}
& x \geq-2
\end{aligned}
$$

