2. $f(x)=e^{-4 x}$

$$
\begin{aligned}
f^{\prime} & =-4 e^{-4 x}- \\
f^{\prime \prime} & =-4 \cdot-4 e^{-4 x} \\
f^{\prime \prime \prime} & =-4 .-4--4 e^{-4 x} \\
f^{(n)} & =(-4)^{n} e^{-4 x}
\end{aligned}
$$

Recall $f(x)=e^{x}$

$$
\approx 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

$$
f(0)=1
$$

$$
f^{\prime}(0)=1
$$

$$
f^{\prime \prime}(0)=1
$$

however we can think of substitute

$$
f(u)=e^{u}=\sum_{n=0}^{\infty} \frac{u^{n}}{n!} \quad \therefore \sum_{n=0}^{\infty} \frac{(-4 x)^{n}}{n!}
$$

4. $f(x)=\sin x \quad c=\pi / 4$

$$
\begin{aligned}
& f\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2} \\
& f^{\prime}\left(\frac{\pi}{4}\right)\left.=\sqrt{\frac{2}{2}}\right) \\
& f^{\prime \prime}(\pi / 4)=-\frac{\sqrt{2}}{2} \\
& f^{\prime \prime}(\pi / 4)-\sqrt{2} / 2
\end{aligned}
$$

$$
\frac{\sqrt{2}}{2}+\frac{\frac{\sqrt{2}}{2}(x-\pi / 4)}{1!}-\frac{\sqrt{2}}{2} \frac{(x-\pi \pi / 4)^{2}}{2!}-\frac{\sqrt{2}}{2}(x-\pi / 4)^{3}+\frac{\frac{\sqrt{2}}{2}(x-\sqrt{2} / 4)^{4}}{3!}+\frac{\sqrt{2}}{2}\left(x^{-\pi \pi / 4)}+\frac{1}{5!}+\cdots\right.
$$

$$
\frac{\sqrt{2}}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}(x-\pi / 4)^{2 n}}{(2 n)!}+\frac{\sqrt{2}}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(x-\sqrt{1 / 4})^{2 n-1}}{(2 n-1)!}
$$

$\begin{aligned} & \frac{\sqrt{2}}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}(x-\pi / 4)^{2 n}}{(2 n)!}\end{aligned}+$
$\begin{aligned} & \frac{\sqrt{2}}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}(x-\pi / 4)^{2 n}}{(2 n)!}\end{aligned}+$
Think about
$f(x)=\sin x$ centered $x=0$

$$
\begin{aligned}
& f(x)=\sin x \text { centered } x=0 \\
& x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}+\ldots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

7. $f(x)=\ln x \quad c=1 \quad f(1)=\ln 1=0$

$$
\begin{aligned}
f^{\prime} & =\frac{1}{x} \quad f^{\prime \prime}=-\frac{1}{x^{2}} \quad f^{\prime \prime \prime}=\frac{2}{x^{3}} \quad f^{(4)}=\frac{-6}{x^{4}} \quad f^{(5)}=\frac{24}{x^{5}} \\
P_{5} & =0+1(x-1)-\frac{(x-1)^{2}}{2!}+\frac{2(x-1)^{3}}{3!}-\frac{6(x-1)^{4}}{4!}+\frac{24(x-1)^{5}}{5!} \\
& =(x+1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\frac{(x-1)^{5}}{5}+\cdots \\
& \sum_{n=0}^{\infty} \frac{(-1)^{n+1}(x-1)^{n}}{n}
\end{aligned}
$$

28. $g(x)=e^{-3 x}$

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\ldots+\frac{x^{n}}{n!}+\ldots
$$

$$
\sum_{n=0}^{\infty} \frac{(-3 x)^{n}}{n!}
$$

$$
\begin{array}{ll}
& \sum_{n=0} \frac{(-2 x)}{n!} \\
\text { 36. } g(x)=2 \sin x^{3} \quad \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \\
2 \sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{3}\right)^{2 n+1}}{(2 n+1)!}=2 \sum_{n=0}^{\infty} \frac{(-1) x^{6 n+3}}{(2 n+1)!}
\end{array}
$$

