AP® CALCULUS AB/CALCULUS BC 2016 SCORING GUIDELINES Question 5 The inside of a funnel of height 10 inches has circular cross sections, as shown in the figure above. At height h, the radius of the funnel is given by $r = \frac{1}{20}(3 + h^2)$, where $0 \le h \le 10$. The units of r and h are inches. - (a) Find the average value of the radius of the funnel. - (b) Find the volume of the funnel. - (c) The funnel contains liquid that is draining from the bottom. At the instant when the height of the liquid is h = 3 inches, the radius of the surface of the liquid is decreasing at a rate of $\frac{1}{5}$ inch per second. At this instant, what is the rate of change of the height of the liquid with respect to time? (a) Average radius = $$\frac{1}{10} \int_0^{10} \frac{1}{20} (3 + h^2) dh = \frac{1}{200} \left[3h + \frac{h^3}{3} \right]_0^{10}$$ = $\frac{1}{200} \left(\left(30 + \frac{1000}{3} \right) - 0 \right) = \frac{109}{60}$ in 3:\{ 1: integral 1: antiderivative 1: answer (b) Volume = $$\pi \int_0^{10} \left(\left(\frac{1}{20} \right) (3 + h^2) \right)^2 dh = \frac{\pi}{400} \int_0^{10} \left(9 + 6h^2 + h^4 \right) dh$$ = $\frac{\pi}{400} \left[9h + 2h^3 + \frac{h^5}{5} \right]_0^{10}$ = $\frac{\pi}{400} \left(\left(90 + 2000 + \frac{100000}{5} \right) - 0 \right) = \frac{2209\pi}{40}$ in³ (c) $$\frac{dr}{dt} = \frac{1}{20}(2h)\frac{dh}{dt}$$ $$-\frac{1}{5} = \frac{3}{10}\frac{dh}{dt}$$ $$\frac{dh}{dt} = -\frac{1}{5} \cdot \frac{10}{3} = -\frac{2}{3} \text{ in/sec}$$ $3: \begin{cases} 2: \text{chain rule} \\ 1: \text{answer} \end{cases}$