AP® CALCULUS AB 2007 SCORING GUIDELINES

Question 4

A particle moves along the x-axis with position at time t given by $x(t) = e^{-t} \sin t$ for $0 \le t \le 2\pi$.

- (a) Find the time t at which the particle is farthest to the left. Justify your answer.
- (b) Find the value of the constant A for which x(t) satisfies the equation Ax''(t) + x'(t) + x(t) = 0 for $0 < t < 2\pi$.
- (a) $x'(t) = -e^{-t} \sin t + e^{-t} \cos t = e^{-t} (\cos t \sin t)$ x'(t) = 0 when $\cos t = \sin t$. Therefore, x'(t) = 0 on $0 \le t \le 2\pi$ for $t = \frac{\pi}{4}$ and $t = \frac{5\pi}{4}$.

The candidates for the absolute minimum are at $t = 0, \frac{\pi}{4}, \frac{5\pi}{4}$, and 2π .

	t	x(t)
	0	$e^0\sin(0)=0$
	$\frac{\pi}{4}$	$e^{-\frac{\pi}{4}}\sin\left(\frac{\pi}{4}\right) > 0$
	$\frac{5\pi}{4}$	$e^{-\frac{5\pi}{4}}\sin\left(\frac{5\pi}{4}\right)<0$
	2π	$e^{-2\pi}\sin(2\pi)=0$

The particle is farthest to the left when $t = \frac{5\pi}{4}$.

(b)
$$x''(t) = -e^{-t}(\cos t - \sin t) + e^{-t}(-\sin t - \cos t)$$

= $-2e^{-t}\cos t$

$$Ax''(t) + x'(t) + x(t)$$
= $A(-2e^{-t}\cos t) + e^{-t}(\cos t - \sin t) + e^{-t}\sin t$
= $(-2A + 1)e^{-t}\cos t$
= 0

Therefore, $A = \frac{1}{2}$.

5:
$$\begin{cases} 2: x'(t) \\ 1: \text{sets } x'(t) = 0 \\ 1: \text{answer} \\ 1: \text{instification} \end{cases}$$

4:
$$\begin{cases} 2: x''(t) \\ 1: \text{ substitutes } x''(t), x'(t), \text{ and } x(t) \\ \text{ into } Ax''(t) + x'(t) + x(t) \\ 1: \text{ answer} \end{cases}$$