1) Given the line $y=-\frac{2}{3} x+4$, write an equation in point-slope form for the line through $(6,-1)$ that is

$$
y-y_{i}=m\left(x-x_{3}\right)
$$

a) Parallel to the given line (2 pts)

$$
y+1=-\frac{2}{3}(x-6)
$$

b) Perpendicular to the given line (2 pts)

$$
y+1=\frac{3}{2}(x-6)
$$

2) Write the equation of the line that is perpendicular to the x-axis and passes through the point $(-4,7)$

$$
x=4
$$

3) Let $f(x)=2-x$ and $g(x)=3-x^{2}$. Find the formula and simplify for:
a) $g(f(x))$

$$
\begin{aligned}
& =3-(2-x)^{2} \\
& 3-\left(4-4 x+x^{2}\right) \\
& 3-4+4 x-x^{2} \\
& -1+4 x-x^{2}
\end{aligned}
$$

4) Use the table below to fill in the blanks.

x	$f(x)$	$g(x)$	$h(x)$
-1	3	0	-6
0	-2	3	1
1	8	2	-1
2	0	-3	5
3	1	2	0

b. $\frac{g(x+h)-g(x)}{h}$
 n

a. $\quad g(f(2))=$ \qquad $g(0)$
b. $f(h(0))=$ \qquad $f(1)$
c. $h(h(f(3)))=-4$ $h(h(1))$ $h(-1)$
5. Simplify:

$$
\begin{array}{ll}
\text { a. } \frac{\left(3-\frac{5}{x+1}\right)}{\left(4+\frac{10}{x+1}\right)} \frac{(x+1)}{(x+1)} & \text { b. } \frac{\left(4+\frac{x}{2 x+1}\right)(2 x+1)}{2-\frac{1}{2 x+1}(2 x+1)} \\
\frac{3(x+1)-5}{4(x+1)+10} \\
\frac{3 x+3-5}{4 x+4+10} & \frac{4(2 x+1)+x}{2(2 x+1)-1} \\
\frac{3 x-2}{4 x+4}
\end{array}
$$

6. Determine if the function has a vertical and/or horizontal asymptotes and determine the equation of them.
a. $f(x)=\frac{3 x-1}{3 x^{2}+2 x-1}$

$$
\begin{aligned}
& =\frac{3 x-1}{(3 x-1)(x+1)} \\
& =\frac{1}{x+1}
\end{aligned}
$$

noizantal $y=0$
vertical $x=-1$
b. $f(x)=\frac{5 x^{2}}{3 x^{2}-x}$

$$
\begin{aligned}
& =\frac{5 x^{2}}{x(3 x-1)} \\
& =\frac{5 x}{(3 x-1)}
\end{aligned}
$$

c. $f(x)=\frac{4 x^{2}-1}{x-1}$
no horizontal vertical $x=1$
noizuntal $y A A$, $y=3 / 3$
vertical $x=1 / 3$

