

1) (No Calculator) The graph of y = f(x) on the closed interval $\begin{bmatrix} -3,7 \end{bmatrix}$ is shown in the figure above. If f is continuous on $\begin{bmatrix} -3,7 \end{bmatrix}$ and differentiable on $\begin{pmatrix} -3,7 \end{pmatrix}$, then there exists a c,

-3 < c < 7 , such that A) f(c) = 0	2-4	-)	
B) $f'(c) = 0$	7+3		
C) $f'(c) = \frac{1}{5}$)
b) $f'(c) = -\frac{1}{5}$ E) $f'(c) = -5$			

B 2) (No Calculator) Let f be the function given by $f(x) = x^3$. What are all values of c that satisfy the conclusion of the Mean Value Theorem on the closed interval [-1,2]?

A) 0 only
B) 1 only
C)
$$\sqrt{3}$$
 only
D) -1 and 1
E) $-\sqrt{3}$ and $\sqrt{3}$
 $f'(x) = \frac{9}{3} = 3$
 $3c^2 = 3$
 $3c^2 = 3$
 $c^2 = 1$
 $c = \pm 1$
 $only$
 $(z = 1)$

3) (No Calculator) Let f(x) be a differentiable function defined only on the interval $-2 \le x \le 10$. The table below gives the value of f(x) and its derivative f'(x) at several points of the domain.

×	-2	0	2	4	6	8	10
$f(\mathbf{x})$	26	27	26	23	18	11	2
f'(x)	1	0	-1	-2	-3	-4	-5

C The line tangent to the graph of f(x) and parallel to the segment between the endpoints intersects the y-axis at the point

A) (0, 27)
B) (0, 28)
C) (0, 31)
D) (0, 36)
E) (0, 43)

$$2-2b = -24$$

 $10-(-2) = -24$
 $10-(-2) = -24$
 $10-(-2) = -2$
 $12 = -2$
 $10-(-2) = -24$
 $12 = -2$
 $10-(-2) = -24$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 = -2$
 $12 =$

4) (Calculator OK) If $f(x) = |(x^2 - 12)(x^2 + 4)|$, how many numbers in the interval $-2 \le x \le 3$ satisfy the conclusion of the Mean Value Theorem?

- A) None
- B) One
- C) Two
- D) Three

E) Four

$$\frac{39-64}{5} = -5$$

now many times w[f'(x) = -5
 δ h the interval (-2,3)