

1) (No Calculator) The graph of $y=f(x)$ on the closed interval $[-3,7]$ is shown in the figure above. If f is continuous on $[-3,7]$ and differentiable on $(-3,7)$, then there exists a c, $-3<c<7$, such that
A) $f(c)=0$
B) $f^{\prime}(c)=0$

$$
\frac{2-4}{7+3}=\frac{-2}{10}=\frac{-1}{5}
$$

C) $f^{\prime}(c)=\frac{1}{5}$
D) $f^{\prime}(c)=-\frac{1}{5}$
E) $f^{\prime}(c)=-5$
B 2) (No Calculator) Let f be the function given by $f(x)=x^{3}$. What are all values of c that satisfy the conclusion of the Mean Value Theorem on the closed interval $[-1,2]$?
A) 0 only
$f(2)-f(-1)$
C) $\sqrt{3}$ only
3

$$
f^{\prime}(x)=3 x^{2}
$$

D) -1 and 1
E) $-\sqrt{3}$ and $\sqrt{3}$
$3 c^{2}=3$
$c^{2}=1$
$c= \pm 1$

3) (No Calculator) Let $f(x)$ be a differentiable function defined only on the interval $-2 \leq x \leq 10$. The table below gives the value of $f(x)$ and its derivative $f^{\prime}(x)$ at several points of the domain.

x	-2	0	2	4	6	8	10
$f(x)$	26	27	26	23	18	11	2
$f^{\prime}(x)$	1	0	-1	-2	-3	-4	-5

The line tangent to the graph of $f(x)$ and parallel to the segment between the endpoints intersects the y-axis at the point
A) $(0,27)$
B) $(0,28)$
C) $(0,31)$
D) $(0,36)$
E) $(0,43)$

$$
\begin{gathered}
\frac{2-26}{10-(-2)}=\frac{-24}{12}=-2 \\
\text { p.0.t }=(4,23) \\
y-23=-2(x-4) \quad \text { when } x=0 \\
y-23=8 \\
y=31
\end{gathered}
$$4) (Calculator OK) If $f(x)=\left|\left(x^{2}-12\right)\left(x^{2}+4\right)\right|$, how many numbers in the interval $-2 \leq x \leq 3$ satisfy the conclusion of the Mean Value Theorem?

A) None
B) One
C) Two
D) Three
E) Four

$$
\frac{39-64}{5}=-5
$$

how manytimes w/ $f^{\prime}(x)=-5$ oh the interval $(-2,3)$

