Name \qquad
Law of Cosines Application problems

1. In a rhombus with a side of 24 , the longer diagonal is 36 . Find, to the nearest degree, the larger angle of the rhombus.

$$
\begin{gathered}
36^{2}=24^{2}+24^{2}-2(24)(24) \cos B \\
B=97.18^{\circ}
\end{gathered}
$$

2. A plane proceeds on a course of 310° for 2 hours at 150 mph . It then changes direction to 200° continuing for 3 more hours at 160 mph . At this time, how far is the $\$ 1 \mathrm{p}$ from its starting point?
 plane

$$
\begin{aligned}
& d^{2}=480^{2}+300^{2}-2(480)(300) \cos 70^{\circ} \\
& d=471 \text { miles }
\end{aligned}
$$

3. A post is driven in a certain spot. Proceed due east for 300 ft , then proceed $\mathrm{S} 40^{\circ} \mathrm{E}$ for another 150 feet. Turn direction again $S 60^{\circ} \mathrm{W}$ for 400 feet and then back to the post in a straight line. Find the area.

$$
=1723 \text { le s8-ft. }
$$

$$
\begin{gathered}
z^{2}=300^{2}+150^{2}-2(300)(150) \cos 130^{\circ} \\
x=+13
\end{gathered}
$$

$$
\frac{\sin 130}{413}-\frac{\sin y}{300^{\circ}}
$$

400 feet

$$
A_{B}=\frac{1}{2}(413)(400) \sin (46.2)
$$

$$
=59617
$$

Total Area $=76853 \mathrm{sz} . \mathrm{ft}$.

