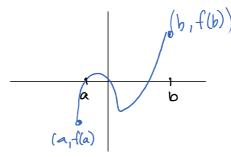
Intermediale Valve Theorem


Given
$$y = f(x)$$
 $x \mid f(x)$
 $-1 \mid 4$
 $0 \mid 3$
 -2
 $-5 \mid 5$
 8

- a. How many roots can you guarantee?

 <u>none</u>
 - b. f(x) is continuous on the interval

 [-1,8]. How many roots can you
 guarantee? (2)
 - C. True or False. If f(x) is continuous on the interval E-1,8, then f(x)=0 at least once.

IVI: A function y = f(x) that is continuous on a closed interval [a,b] takes on every value between $f(a) \in f(b)$.

Dotermino whether each function

1 1 21200

Continuity Steps

- (1) f(c) exists
- 3 lim f(x) exists x->c
- (3) lim f(x) = f(c)

Determine whether each function is continuous at the given point.

State why or why not.

$$f(x) = \begin{cases} x & 0 \le x \le 1 \\ 2 - x & x \ge 1 \end{cases} \quad x = 1$$

- (i) f(1) = 2 1 = 1
- 2 1,mf(x)=1 1,mf(x)=2-1=1 x->1-

3
$$f(1) = \lim_{x \to 1} f(x) = 1$$

$$J(x)$$
 is continuous $D = 1$
 $D = 1$
 $D = 1$