Name <u>Solutions</u>

Write an equation in standard form for each hyperbola.

a) Foci at $(\pm 5,0)$; endpoints of transverse axis $(\pm 3,0)$

b) Foci at $(0,\pm7)$; endpoints of transverse axis $(0,\pm4)$

c = 7	a=4	b = 133
OPENS	v-d	C (0,0)
' y2	×2.	= 1
16-	33	- 1

									_	_
_									_	
 			_						_	_

c) Foci at $(0,\pm 6)$; transverse axis length = 6

$$C = 6 \quad 2a = 6 \quad a = 3$$

$$b = \sqrt{27} \quad C(0,0) \text{ opens u-d}$$

$$\frac{y^{2}}{9} - \frac{x^{2}}{27} = 1$$

d) Endpoints of transverse axis at $(\pm 4, 0)$; Endpoints of conjugate axis at $(0, \pm 3)$

$$a = 4$$
 $b = 3$ $C = 9$
opens L-R $C(0,0)$
 $\frac{x^{2}}{x^{2}} - \frac{y^{2}}{x^{2}} = 1$

.

10

	-				-										
-	-	-	-	-	-	-			-	-	-	-	-	-	-
-			-	-		-		-	-	-			-	-	-
															•
							_								

f) The transverse axis endpoints are (-5, 2) and (3, 2); the conjugate axis is length 6,

2a = 8	a = 4 = b = 3
c(-1,2)	opens L-R
$(X+1)^{2}$	$(1/-2)^{2}$
16	

g) State the location of the center, the length of the semi-transverse and semi-conjugate axis, and write in parametric form: $\frac{x^2}{36} - \frac{y^2}{25} = 1$ C(0,0) 2a = 12 2b = 10

$$x = 6 sect$$

 $y = 5 tant$

h) State the location of the center, the length of the semi-transverse and semi-conjugate axis, and write in parametric form: $\frac{(x-2)^2}{16} - \frac{(y+1)^2}{12} = 1$. $\mathcal{L}(2, -1)$ 2a = 8 $2b = 2\sqrt{2}$

$$X = 2 + 4 \operatorname{sect}$$
$$Y = -1 + \sqrt{12} + AN + 1$$

i) Put the equation. $3x^2 - 5y^2 - 12x + 30y + 42 = 0$ in to standard form.

j) Put the equation. $4x^2 - y^2 - 32x + 16y - 128 = 0$ in to standard form.

$$4 (x^{2} - 8x + --) - (y^{2} - 16y + 64) = 128$$

$$4 (x^{2} - 8x + 16) - (y^{2} - 8)^{2} = 128 + 64 - 64$$

$$4 (x - 4)^{2} - (y - 8)^{2} = 128$$

$$\frac{(x - 4)^{2}}{32} - \frac{(y - 8)^{2}}{128} = 1$$