Name $\qquad$
Due: $\qquad$
Directions: Show work to solve all problems, then choose the correct answer. Calculator problems have a $C$ next to them.
C 1. The function $f(x)=\frac{x}{e^{x}}$ has the derivative $f^{\prime}(x)=\frac{1-x}{e^{x}}$. Use the Fundamental Theorem
of Calculus to find the exact value of the definite integral $\int_{0}^{1} \frac{1-x}{e^{x}} d x .=f(1)-f(0)$

$$
=\frac{1}{e}-\frac{0}{e^{0}}=\frac{1}{e}
$$

A. $\frac{1}{3 e}$
B. $\frac{1}{2 e}$
C. $\frac{1}{e}$
D. $e$
E. None of these
D. If $F$ and $f$ are continuous functions such that $F^{\prime}(x)=f(x)$ for all $x$, then $\int_{a}^{b} f(x) d x=\int_{a}^{b} F^{\prime}(x) d x$ $=F(b)-F(a)$
A. $F^{\prime}(b)-F^{\prime}(a)$
B. $F^{\prime}(a)-F^{\prime}(b)$
C. $F(a)-F(b)$
(D. $F(b)-F(a)$
E. None of these

C 3. A particle is moving along the $x$-axis so that at time $t$ its velocity is given by $v(t)=3 t^{2}-2 t$. At the instant when $t=0$, the particle's location is $x=2$. The position of the particle at $t=3$ is
$S(0)=2$
$S(3)=$ ?
$\int_{0}^{3} v(t) d t=s(3)-s(0)$
A. 12
B. 16
C. 20
D. 24
E. None of these ${ }_{3}$
$S(0)+\int_{0}^{3} v(t) d t=S(3)$
$\begin{aligned} 2+\left[t^{3}-t^{2}\right]_{0}^{3}=2 & +27-9 \\ & =20\end{aligned}$

D 4. If $\int_{-1}^{k}\left(3 x^{2}\right) d x=9$, then $k=$
A. -1
B. 0
C. 1
D. 2
E. 3
5. If $f$ is the function dedfed ${ }^{2}$ by $\neq \sqrt[3]{x^{2}+4 x}$ and $g$ is $K_{\text {an }}-(-1)=9$ A $g(5)=7$, then' $g(1) \approx$
A. -3.882
B. -3.557
C. 1.710
D. 3.557
E. 3.882

$$
7-\int_{1}^{5} f(x) d x=g(1)
$$

$$
<-7+\int_{1}^{5} f(x) d x=-g(1)
$$

(C) 6. The rate at which ice is melting in a pond is given by $\frac{d V}{d t}=\sqrt{1+e^{t}}$, where $V$ is the volume of ice in cubic feet and $t$ is the time in minutes. Suppose that $1.642 \mathrm{ft}^{3}$ of ice melted in the first minute, $V(1)=1.642$. Find $V(3)$, the total amount of ice has melted after 3 minutes.

$$
\int_{1}^{3} v^{\prime}(t) d t=v(3)-v(1)
$$

A. $7.60 f t^{3}$
B. $7.62 \mathrm{ft}^{3}$
C. $7.64 \mathrm{ft}^{3}$
D. $7.66 \mathrm{ft}^{3}$
E. $7.68 f t^{3}$

$$
v(1)+\int_{1}^{3} v^{\prime}(t) d t=v(3)
$$

$e^{7 .} \frac{d}{d x}\left(\int_{0}^{x^{2}} \sin \left(l^{3}\right) t t\right)=\sin x^{6} \cdot 2 x$ $=2 x \sin x^{6}$
(a) $-\cos \left(x^{6}\right)$
(b) $\sin \left(x^{3}\right)$
(c) $\sin \left(x^{6}\right)$
(d) $2 x \sin \left(x^{3}\right)$
(e) $2 x \sin \left(x^{6}\right)$
(C) 8. Let $g$ be the function given by:
$d$

$$
g(x)=\int_{0}^{x} \sin \left(t^{2}\right) d t \quad g^{\prime}(x)=\sin x^{2}
$$

for $-1 \leq x \leq 3$. On which of the following intervals is $g$ decreasing?
(a) $-1 \leq x \leq 0$
(b) $0 \leq x \leq 1.772$
(c) $1.253 \leq x \leq 2.171$
(d) $1.772 \leq x \leq 2.507$
(e) $2.802 \leq x \leq 3$

Free Response: Show work and justify where required.
9.


A car is traveling on a straight road. For $0 \leq t \leq 24$ seconds, the car's velocity $v(t)$, in meters per second, is modeled by the piecewise-linear function defined by the graph above.
(a) Find $\int_{0}^{24} v(t) d t$. Using correct units, explain the meaning of $\int_{0}^{24} v(t) d t$.

The car traveled 360 meters over the time interval

0 to 24 seconds -
10.

The graph of the function $f$ shown above consists of six line segments. Let $g$ be the function given by $g(x)=\int_{0}^{x} f(t) d t$.
(a) Find $g(4), g^{\prime}(4)$, and $g^{\prime \prime}(4)$.
(b) Does $g$ have a relative minimum, a relative maximum, or neither at $x=1$ ? Justify your answer.


$$
\begin{aligned}
& g(4)=\int_{0}^{4} f(t) d t \\
& =-\frac{1}{2}(1)(2)+\frac{1}{2}(2)(3+1)=-1+4=3
\end{aligned}
$$

