FTC Classwork/Homework
Due: _____

Directions: Show work to solve all problems, then choose the correct answer. Calculator problems have a C next to them.

Name ME

1. The function $f(x) = \frac{x}{e^x}$ has the derivative $f'(x) = \frac{1-x}{e^x}$. Use the Fundamental Theorem

of Calculus to find the exact value of the definite integral $\int_{0}^{1} \frac{1-x}{e^{x}} dx = f(1) - f(0)$ $= \frac{1}{e} - \frac{0}{e^{2}} = \frac{1}{e}$

A. $\frac{1}{3e}$ B. $\frac{1}{2e}$ C. $\frac{1}{e}$ D. e E. None of these

2. If F and f are continuous functions such that F'(x) = f(x) for all x, then $\int_a^b f(x) dx = \int_a^b F'(x) dx$ A. F'(b) - F'(a) B. F'(a) - F'(b) C. F(a) - F(b) D. F(b) - F(a) E. None of these

3. A particle is moving along the x-axis so that at time t its velocity is given by

$$v(t) = 3t^2 - 2t$$
. At the instant when $t = 0$, the particle's location is $x = 2$. The position
of the particle at $t = 3$ is $S(0) = 2$ $S(3) = ?$
 $\int_{0}^{3} v(t) dt = S(3) - S(0)$
A. 12 B. 16 C. 20 D. 24 E. None of these
 $S(0) + \int_{0}^{3} v(t) dt = S(3)$ $2 + \left[t^3 - t^2\right] = 2 + 27 - 9$
 $= 20$
4. If $\int_{-1}^{k} (3x^2) dx = 9$, then $k =$
A. -1 B. 0 C. 1 D. 2 E. 3

C 5. If f is the function defined by
$$f(x) = \sqrt[3]{x^2 + 4x}$$
 and g is an antiderivative of f such that
 $A = g(5) = 7$, then $g(1) \approx$
 $f(x) dx = g(5) - g(1)$
A. -3.882 B. -3.557 C. 1.710 D. 3.557 E. 3.882
 $7 - \int_{-1}^{5} f(x) dx = g(1)$
C 6. The rate at which ice is melting in a pond is given by $\frac{dV}{dt} = \sqrt{1 + e^t}$, where V is the
volume of ice in cubic feet and t is the time in minutes. Suppose that $1.642 \ fr^3$ of ice
melted in the first minute, $V(1) = 1.642$. Find $V(3)$, the total amount of ice has melted
after 3 minutes.
 $\int_{-1}^{3} V'(1) dt = V(3) - V(1)$
A. 7.60 fr^3 B. 7.62 fr^3 C. 7.64 fr^3 D. 7.66 fr^3 E. 7.68 fr^3
 $V(1) + \int_{-1}^{3} V'(1) dt = V(3)$
 $V(1) + \int_{-1}^{3} V'(1) dt = V(3)$
 $(a) - \cos(x^6)$ (b) $\sin(x^3)$ (c) $\sin(x^6)$ (d) $2x\sin(x^3)$ (e) $2x\sin(x^6)$

8. Let g be the function given by: $g(x) = \int_0^x \sin(t^2) dt$ for $-1 \le x \le 3$. On which of the following intervals is g decreasing?

(a) $-1 \le x \le 0$ (b) $0 \le x \le 1.772$ (c) $1.253 \le x \le 2.171$ (d) $1.772 \le x \le 2.507$ (e) $2.802 \le x \le 3$

Free Response: Show work and justify where required.

A car is traveling on a straight road. For $0 \le t \le 24$ seconds, the car's velocity v(t), in meters per second, is modeled by the piecewise-linear function defined by the graph above.

(a) Find $\int_{0}^{24} v(t) dt$. Using correct units, explain the meaning of $\int_{0}^{24} v(t) dt$. The car traveled 3100 meters over the time interval O to 24 seconds-

10.

The graph of the function f shown above consists of six line segments. Let g be the function given by

$$g(x) = \int_0^x f(t) \, dt.$$

- (a) Find g(4), g'(4), and g''(4).
- (b) Does g have a relative minimum, a relative maximum, or neither at x = 1? Justify your answer.

 $g(4) = \int_{-1}^{4} f(t) dt$

constrom - to +