\qquad FTC Review 1

RECAP:

Fundamental Theorem of Calculus Part II:
$\int_{a}^{b} f(x) d x=F(b)-F(a)$
Where F is the antiderivative of f
a and b are both constants and $a \leq b$
i.e $\int_{0}^{\frac{\pi}{4}} \sec ^{2} x d x=\tan \frac{\pi}{4}-\tan 0=1-0=1$

Fundamental Theorem of Calculus Part I:

Let $y=\int_{a}^{u} f(t) d t$, Where u is a function of x
Then $y=F(u)-F(a)$
$\frac{d y}{d x}=y^{\prime}=\frac{d}{d x}(F(u)-F(a))=F^{\prime}(u) \cdot u^{\prime}=f(u) \cdot u^{\prime}$
i.e. $\frac{d}{d x} \int_{3}^{5 x^{2}} \sqrt{\tan t} d t=10 x \sqrt{\tan \left(5 x^{2}\right)}$

1. Evaluate:
A. $\int_{3}^{4} \frac{3}{x^{2}} d x=\frac{1}{4}$
$\int_{3}^{4} 3 x^{-2} d x=-\left.3 x^{-1}\right|_{3} ^{4}$
$=\frac{-3}{4}-\left(-\frac{3}{3}\right)=\frac{-3}{4}+1$
B. $\int_{0}^{\frac{\pi}{3}} \sec x \tan x d x=$
$\left.\sec x\right|_{0} ^{\pi / 3}=\sec \frac{\pi}{3}-\sec 0$
$=2-1$
2. For each problem, find y^{\prime}.
A. $y(x)=\int_{-\frac{\pi}{6}}^{x} 2 \sec ^{2} t d t$
B. $y(x)=\int_{-\frac{\pi}{6}}^{3 x} 2 \sec t \tan t d t$

$$
y^{\prime}=2 \sec ^{2} x
$$

$$
\begin{aligned}
y^{\prime} & =3 \cdot 2 \sec (3 x) \tan (3 x) \\
& =6 \sec (3 x) \tan (3 x)
\end{aligned}
$$

3. The following is a graph of $f^{\prime}(x)$. Let $g(x)=\int_{17}^{3 x} f^{\prime}(t) d t$. Find $g^{\prime}(0.5)$.

$$
\begin{aligned}
& g^{\prime}(0.5) \\
& g^{\prime}(x)==f(3 x) \cdot 3 \\
& g^{\prime}\left(\frac{1}{2}\right)=f\left(\frac{3}{2}\right) \cdot 3 \\
&=1 \cdot 3=3
\end{aligned}
$$

4. Let h be the continuous function defined by $h(x)=\int_{0}^{x} f(t) d t$. The graph of $f(x)$ is given below.
a) Find $f(1)$ and $f(4)$.

$$
\begin{aligned}
& f(1)=-3 \\
& f(4)=1
\end{aligned}
$$

b) Is $h(2)$ positive or negative?

$$
h(2)<0
$$

c) Is $h(5)$ positive or negative?

$h(5)<0$
d) Make sign charts for $h^{\prime}(x)$ and $h^{\prime \prime}(x)$

e) Find any x values where $h(x)$ has a relative maximum. Justify your answer.

$$
x=5 \text { because } h^{\prime}=f \text { changes from } \Theta \text { to } \Theta
$$

$x=0$ because this is a left endpt with $n^{\prime}=f<0 \mathrm{~m}$
f) Find the intervals) where $h(x)$ is decreasing. Justify your answer.

$$
(0,3) \cup(5,7) \cup(7,10) \text { because } n^{\prime}=f<0 \text {. }
$$

g) Find all x values of inflection points of $h(x)$.

$$
\begin{aligned}
& x=1,4,6,7,8 \text { because } h^{\prime \prime}=f^{\prime} \text { changes sign. } \\
& \text { ind } x \text { values of inflection points of } h(x) \text {. }
\end{aligned}
$$

h) Find the intervals) where $h(x)$ is concave up. Justify your answer. $(14) \cup(67) \cup(810)$ because $n^{\prime \prime}=f^{\prime}>0$.
5. Let $s(t)=\int_{0}^{t} f(x) d x$ be the position (feet) of a particle moving along a coordinate axis.

The graph of $f(t)$ is given where $\mathrm{t}=$ time in seconds.
a. Find $s^{\prime}(t)$ and state what it represents in context of the problem. $f(t)$ which is the velocity ($f+1 / \mathrm{sec}$) of the particle a time t
b. When is the particle moving to the
 right, left, and stopped? Justify your answer.
Right $0 \leqslant t<3$ and $8.25<t \leq 10$ bic $S^{\prime}(t)=f(t)>0$ on the intervals Left $3<t<7$ and $7<t<8.25 \quad b / c \quad S^{\prime}(t)=f(t) 20$ on the interval Stepped $t=3,7,8.25$ bbc $S^{\prime}(t)=f(t)=0$
c. when will the graph of $s(t)$ have a relative maximum on the interval [0,10]? Justify your answer.

$$
S^{\prime}(t)=f(t){\left.\underset{c}{\infty} \frac{t-1}{2} \frac{1}{2}+\right]_{10}^{0}}_{8.25}^{1}
$$

$S(t)$ will have a rel. mare of $t=3$ bic $S^{\prime}(t)=f(t)$ goes from $+t 0-\infty t=3$ $s(t)$ will have a rel max a) $t=10 \quad b\left(c, t=10\right.$ is an end pt and $s^{\prime}(t)=f(t)>0$
d. What is the particle's position at $\mathrm{t}=7$ seconds?

$$
S(7)=\int_{0}^{7} f(x) d x=7.5-4=3.5 \text { feet }
$$

e. When is the particle moving toward the origin?

$$
(3,8.25)
$$

f. Is the particle speeding up, slowing down, or neither at $t=4$ seconds. Justify your answer.

