Recall The Fundamental Theorem of Calculus:
If $g(x)=\int_{a}^{x} f(t) d t$, then $\int_{a}^{b} f(t) d t=g(b)-g(a)$ and $g^{\prime}(u)=f(u) \cdot d u$.

1. Let $g(x)=\int_{-7}^{8 x^{2}+4} f(t) d t$. Find $g^{\prime}(x)$.
2. Let $g(x)=\int_{\ln x}^{\cos 3 x} f(t) d t$. Find $g^{\prime}(x)$.
3. The function $g(x)=\frac{x^{2}}{e^{x}}$ has the derivative $g^{\prime}(x)=\frac{x(2-x)}{e^{x}}$. Find the exact value of $\int_{1}^{4} \frac{x(2-x)}{e^{x}} d x$.
4. If f is the function defined by $f(x)=\sqrt[3]{\cos 5 x}$ and g is an antiderivative of f such that $g(2)=5$, then use a calculator to approximate $g(6)$.
5. If f is the function defined by $f(x)=\frac{1}{5 x^{2}+3}$ and g is an antiderivative of f such that $g(3)=11$, then use a calculator to approximate $g(1)$.
6. Let f and h be twice differentiable functions.

x	0	1	2	3	4	5	6	7	8	9
$f(x)$	0	3	4	-2	8	1	0	4	1	7
$f^{\prime}(x)$	-2	-3	-4	-5	-6	2	-2	3	23	-2
$h(x)$	1	2	1	4	10	5	-4	2	3	4
$h^{\prime}(x)$	5	4	3	2	1	6	-6	1	4	8

a. Evaluate $\int_{1}^{3} h^{\prime}(x) d x$.
b. Let $a(x)=f(2 x)$.
i. What is $a^{\prime}(x)$?
ii. Evaluate $\int_{1}^{3} a^{\prime}(x) d x$.
iii. Evaluate $\int_{1}^{3} f^{\prime}(2 x) d x$
c. Let $b(x)=f(h(x))$.
i. What is $b^{\prime}(x)$?
ii. Evaluate $\int_{1}^{3} b^{\prime}(x) d x$.
iii. Evaluate $\int_{2}^{5} f^{\prime}(h(x)) \cdot h^{\prime}(x) d x$
d. Let $m(x)=\int_{-3}^{e^{2 x}} f(t) d t$.
i. What is $m^{\prime}(x)$?
ii. Find $m^{\prime}(0)$.
7. The graph below is $f(x)$. Let $g(x)=\int_{0}^{x} f(t) d t$.

a. Calculate $g(0), g(2)$, and $g(10)$.
b. Make a sign chart for $g^{\prime}(x)$ and $g^{\prime \prime}(x)$.
c. Where is $g(x)$ increasing? Justify your response.
d. Where is $g(x)$ decreasing? Justify your response.
e. Where is $g(x)$ concave up? Justify your response.
f. Where is $g(x)$ concave down? Justify your response.
g. Where does $g(x)$ have points of inflection? Justify your response.
h. Where does $g(x)$ have local minima? Justify your response.
i. Where does $g(x)$ have local maxima? Justify your response.
j. What is the minimum value of $g(x)$? Justify your response.
k. What is the maximum value of $g(x)$?

1. What is $g(0)$ if $g(x)=\int_{6}^{x} f(t) d t$?
