AP Calculus AB Quarter 3 Cumulative Review

Name:

Recall The Fundamental Theorem of Calculus:

If
$$g(x) = \int_{a}^{x} f(t)dt$$
, then $\int_{a}^{b} f(t)dt = g(b) - g(a)$ and $g'(u) = f(u) \cdot du$.
1. Let $g(x) = \int_{-7}^{8x^{2}+4} f(t)dt$. Find $g'(x)$.

2. Let
$$g(x) = \int_{\ln x}^{\cos 3x} f(t) dt$$
. Find $g'(x)$.

3. The function
$$g(x) = \frac{x^2}{e^x}$$
 has the derivative $g'(x) = \frac{x(2-x)}{e^x}$. Find the exact value of $\int_1^4 \frac{x(2-x)}{e^x} dx$.

- 4. If f is the function defined by $f(x) = \sqrt[3]{\cos 5x}$ and g is an antiderivative of f such that g(2)=5, then use a calculator to approximate g(6).
- 5. If f is the function defined by $f(x) = \frac{1}{5x^2 + 3}$ and g is an antiderivative of f such that g(3) = 11, then use a calculator to approximate g(1).

6. Let f and h be twice differentiable functions.

x	0	1	2	3	4	5	6	7	8	9
f(x)	0	3	4	-2	8	1	0	4	1	7
f'(x)	-2	-3	-4	-5	-6	2	-2	3	23	-2
h(x)	1	2	1	4	10	5	-4	2	3	4
h'(x)	5	4	3	2	1	6	-6	1	4	8

a. Evaluate
$$\int_{1}^{3} h'(x) dx$$
.

b. Let
$$a(x) = f(2x)$$
.
i. What is $a'(x)$?

ii. Evaluate
$$\int_{1}^{3} a'(x) dx$$
.
iii. Evaluate $\int_{1}^{3} f'(2x) dx$

c. Let
$$b(x) = f(h(x))$$
.
i. What is $b'(x)$?

ii. Evaluate
$$\int_{1}^{3} b'(x) dx$$
.

iii. Evaluate
$$\int_{2}^{5} f'(h(x)) \cdot h'(x) dx$$

d. Let
$$m(x) = \int_{-3}^{e^{2x}} f(t)dt$$
.
i. What is $m'(x)$?

ii. Find m'(0).

7. The graph below is f(x). Let $g(x) = \int f(t)dt$.

Calculate g(0), g(2), and g(10).

- b. Make a sign chart for g'(x) and g''(x).
- c. Where is g(x) increasing? Justify your response.
- d. Where is g(x) decreasing? Justify your response.
- e. Where is g(x) concave up? Justify your response.
- f. Where is g(x) concave down? Justify your response.
- g. Where does g(x) have points of inflection? Justify your response.
- h. Where does g(x) have local minima? Justify your response.
- i. Where does g(x) have local maxima? Justify your response.
- j. What is the minimum value of g(x)? Justify your response.
- k. What is the maximum value of g(x)?

1. What is
$$g(0)$$
 if $g(x) = \int_{6}^{x} f(t)dt$