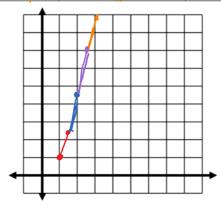
7.1 Day 2 Euler's (Monday 11/25)


Saturday, November 23, 2019

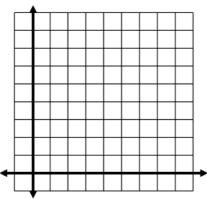
6:57 PM

7.1 Euler's Approximation Method

Starting at (1, 1) and using $\Delta x = .5$, generate the next three points of the Euler line for $\frac{dy}{dx} = 2x + 1$. Show work below table.

(x, y)	f'(x,y)	Δx or h	$\Delta y = f'(x, y) \Delta x$	$(x + \Delta x, y + \Delta y)$
(1,1)	3	0.5	$3(\frac{1}{2}) = \frac{3}{2}$	(1.5,2,5)
(1.5, 2.5)	4	0.5	4(2)= 2	(2, 4,5)
(2,4.5)	5	0.5	5(1)=2.5	(2.5,7)
(2.5,7)	le	(0.5)	$(a(\frac{1}{2}) = 3$	(3,10)

$$\int dy = (2x+1) dx \qquad y = x+x$$


$$y = x^2 + x + C \qquad y(3) = 11$$

$$1 = 1+1+C \quad C = -1$$

f(3) \$2 10

Starting at (1, 2) and using $\Delta x = .5$, generate the next three points of the Euler line for $\frac{dy}{dx} = x + \frac{y}{2}$. Show work below table.

(x, y)	f'(x, y)	Δx or h	$\Delta y = f'(x, y) \Delta x$	$(x + \Delta x, y + \Delta y)$
(1,2)	2	0.5	1	(1.5, 3)
(1.5, 3)	\mathcal{L}	0,5	1.5	(2,4.5)
(2, 4.5)	4.25	0.5	2.125	(2.5, 6.625)
(2.5,6.62)	5,8125	0.5	2. 90425	(3, 9, 53 125)

