Pg 644 #17, 26, 45, 46, 55, 56, 59, 67

26.
$$f(x) = \frac{1}{x^2}$$
 $n=4$ $c=2$

$$f(z) = \frac{1}{4}$$

$$f' = -2x^{-3} \qquad f'(z) = \frac{-2}{3} = \frac{-1}{4}$$

$$f''' = (6x^{-4} \qquad f''(z) = \frac{6}{32} = \frac{3}{32}$$

$$f''' = -24x^{-5} \qquad f'''(z) = \frac{-24}{32} = \frac{-3}{4}$$

$$f''' = 126x^{-6} \qquad f^{(4)}(z) = \frac{120}{64} = \frac{15}{8}$$

$$P_{4}(x) = \frac{1}{4} - \frac{1}{4}(x-2) + \frac{3}{8} \frac{(x-3)^{2}}{2!} - \frac{3}{4} \frac{(x-2)^{3}}{3!} + \frac{15}{8} \frac{(x-2)^{4}}{4!}$$

45.
$$COS(0.3) \approx 1 - \frac{(0.3)^3}{2!} + \frac{(0.3)^4}{4!}$$
 Sinx $\frac{2}{5!} \cos x \cos t = \frac{1}{4!}$ bigger than $1 = \frac{1}{5!}$ $\frac{1}{5!} \cos x \cos t = \frac{1}{5!} \cos x \cos t = \frac{1}{5!}$ Ever Bound $\frac{1}{5!} \cos x \cos t = \frac{1}{5!} \cos x \cos t = \frac{1}{5!$

46.
$$e^{x/1+1} + \frac{1^2}{3!} + \frac{3}{3!} + \frac{1^4}{4!} + \frac{1^5}{5!}$$
 error $\approx e \cdot \frac{1^6}{6!}$ $0 \le 7 \le 1$
 $|R_n(e)| \le \frac{e(1^6)}{6!} \approx 0.003775$ error Bound

Exact 0.00162

56.
$$f(x) = e^{x} + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!}$$
 (x20)

$$f^{(4)}(x) = e^{X}$$

$$|error| \le \frac{\int_{-0.439}^{(4)} (x)}{4!} \le 0.001$$
 $|error| \le \frac{\int_{-0.439}^{(4)} (x)}{4!} \le 0.001$

56)
$$f(x) = \sin x \approx x - \frac{x^3}{3!}$$

$$f''' = -\sin x$$

$$f''' = -\sin x$$

$$f''' = -\cos x$$

$$f^{(n)}(x) = 1$$

39. Pn estimates estimate
$$f(x)$$
 better as $x \rightarrow C$ an $P(c) = f(c)$

$$47. \quad f(x) = \sin\left(\frac{Tx}{4}\right) \qquad P_2(x) = \left[-\left(\frac{\pi^2}{32}\right)(x-2)^2\right]$$

a.
$$\Theta_{2}(x) = -1 + \left(\frac{\pi^{2}}{32}\right)(x+2)^{2}$$

b.
$$R_2(x) = -1 + \frac{\pi^2}{30} (x-1e)^2$$