NO CALCULATOR

1. The graph of $y=f(x)$ on the closed interval $[-3,7]$ is shown in the figure above. If f is continuous on $[-3,7]$ and differentiable on $(-3,7)$, then there exists a $c,-3<c<7$, such that
A. $f(c)=0$
B. $f^{\prime}(c)=0$

$$
\frac{f(7)-f(-3)}{7-(-3)}=\frac{2-4}{7-(-3)}=\frac{-2}{10}=\frac{-1}{5}
$$

C. $f^{\prime}(c)=\frac{1}{5}$
D. $f^{\prime}(c)=-\frac{1}{5}$
E. $f^{\prime}(c)=-5$
2. Let f be the function given by $f(x)=x^{3}$. What are all values of c that satisfy the conclusion of the Mean Value Theorem on the closed interval $[-1,2]$?
A. 0 only

$$
f^{\prime}(x)=3 x^{2}=
$$

$$
f(2)-f(-1)
$$

B. 1 only
C. $\sqrt{3}$ only
D. -1 and 1
E. $-\sqrt{3}$ and $\sqrt{3}$

$$
3 x^{2}=\frac{8-(-1)}{3}=3
$$

because -1 IS not
on $(-1,2)$
3. Let $f(x)$ be a differentiable function defined only on the interval $-2 \leq x \leq 10$. The table below gives the value of $f(x)$ and its derivative $f^{\prime}(x)$ at several points of the domain.

x	-2	0	2	4	6	8	10
$f(x)$	26	27	26	23	18	11	2
$f^{\prime}(x)$	1	0	-1	-2	-3	-4	-5

The line tangent to the graph of $f(x)$ and parallel to the segment between the endpoints intersects the y-axis at the point
A. $(0,27)$
B. $(0,28)$
C. $(0,31)$
E. $(0,43)$

$$
\begin{gathered}
\frac{f(10)-f(-2)}{10-(-2)}=\frac{2-26}{12}=-2=f(x) \\
f^{\prime}(x)=-2 \quad x=4 \operatorname{on}(-2,10) \\
f(4)=23 \\
y-23=-2(x-4) \operatorname{set} x=0 \\
y=23+8=31 \quad(0,31)
\end{gathered}
$$

4. If $f(x)=\ln x-k \sqrt{x}$ has a local minimum at $x=4$ then the value of k is
A. -1
B. $\frac{1}{2}$
C. 1
D. 4
E. none of these
5.

How many extrema (maximum and minimum) does the function $f(x)=(x+2)^{3}(x-5)^{2}$ have on the interval $-3 \leq x \leq 6$?
(A) None

$$
f^{\prime}(x)=3(x+2)^{2}(x-5)^{2}+2(x+2)^{3}(x-5)
$$

(B) One
(C) Two
(D) Three
(E) Four

$$
f^{\prime}(x) \underset{-3-2}{+11 / 556}
$$

$$
f(x)
$$

6.

The graph of $y=2 x^{3}+24 x-18$ is
(A) increasing for all x
(B) decreasing for all x

$$
\begin{aligned}
& y^{\prime}=6 x^{2}+24>0 \text { for all } x \\
& \therefore A
\end{aligned}
$$

(C) only increasing for all x such that $|x|>2$
(D) only increasing for all x such that $|x|<2$
(E) only decreasing for all x such that $x<-2$
7.

A particle moves along the x-axis so that at any time t its position is given by $x(t)=(t+1)(t-3)^{3}$. For what values of t is the velocity of the particle increasing ?
(A) $t>3$ only
(B) $0<t<3$ only
(C) $1<t<3$ only

$$
\begin{aligned}
x^{\prime}(t) & =1(t-3)^{3}+3(t-3)^{2}(t+1) \\
& =(t-3)^{2}(t-3+3(t+1))=(t-3)^{2}(4 t)
\end{aligned}
$$

(D) $t<1$ or $t>3$
(E) $0<t<3$ or $t>3$

$$
\begin{aligned}
x^{\prime \prime}(t) & =2(t-3)(4 t)+(t-3)^{2} \cdot 4 \\
& =(t-3)(8 t+4(t-3))=(t-3)(12 t-32) \\
& =12(t-3)(t-1)
\end{aligned}
$$

8.

In which interval is the function $f(x)=x^{3}+6 x^{2}+9 x+1$ increasing?
(A) $(-\infty,-3)$ only

$$
f^{\prime}(x)=3 x^{2}+12 x+9=0
$$

(B) $(-3,-1)$ only

$$
\begin{aligned}
& 3\left(x^{2}+4 x+3\right)=0 \\
& 3(x+3)(x+1)=0
\end{aligned}
$$

(C) $(-1, \infty)$ only
(D) $(-\infty,-3) \cup(-1, \infty)$
(E) $(-\infty,-3) \cup(1, \infty)$

9.

Let f be the function given by $f(x)=x^{3}$. What are all values of c that satisfy the conclusion of the Mean Value Theorem on the closed interval $[-1,2]$?
(A) 0 only
(B) 1 only
(C) $\sqrt{3}$ only
(D) -1 and 1
(E) $-\sqrt{3}$ and $\sqrt{3}$
10.

At what values) of x does $f(x)=x^{4}-8 x^{2}$ have a relative minimum?
(A) 0 and -2 only
(B) 0 and 2 only
(C) 0 only
(D) -2 and 2 only
(E) $-2,0$, and 2
11.

The maximum value of $f(x)=2 x^{3}-9 x^{2}+12 x-1$ on $[-1,2]$ is
(A) 0
(B) 1
(C) 2
(D) $3 \quad f^{\prime}(x)$
(E) 4

$$
\begin{array}{r}
f^{\prime}(x)=6 x^{2}-18 x+12=0 \\
6\left(x^{2}-3 x+2\right)=0 \\
6(x-2)(x-1)=0
\end{array}
$$

$$
f(1)=2-9+12-1=4
$$

12.

For what value of k will $\frac{8 x+k}{x^{2}}$ have a relative maximum at $x=4 ?$
(A) -32
(B) -16
(C) 0
(D) 16
(E) 32

$$
\frac{8 x^{2}-(8 x+12) \cdot 2 x}{x^{4}} \text { b } x=4
$$

$$
\frac{8 \cdot 16-(32+12) \cdot 8}{4^{4}}=0
$$

$$
\begin{aligned}
h & =\frac{-128+256}{-8} \\
& =-16
\end{aligned}
$$

13. Which of the following statements is false?
A. If c is a critical value of the function f, then it is also a critical value of the function $g(x)=f(x)+k$ where k is a constant.
B. If a function f is continuous on a closed interval then it must have a minimum value on the interval.
C. If a function not necessarily continuous has 3 zeros, then it must have at least 2 points where the tangent line is horizontal.
D. The maximum value of a continuous function on a closed interval can occur at more than one input in the interval.
E. The graph of a function can have at most two horizontal asymptotes.

CALCULATOR ALLOWED

1. The graph of the function $f(x)=2 x^{\frac{5}{3}}-5 x^{\frac{2}{3}}$ is increasing on which of the following intervals?
I. $1<x$
II. $0<x<1$
$\frac{10}{3} x^{2 / 3}-\frac{10}{3} x^{-1 / 3}$ III. $x<0$ graph $f^{\prime}(x)$ and fInd
A. I only
B. II only
C. III only
D. I and II only
E. I and III only where $f^{\prime}(x)>0$
2. Let $f(x)=x^{5}-3 x^{2}+4$. For how many inputs c between $a=-2$ and $b=2$ is it true that
$\frac{f(b)-f(a)}{b-a}=f^{\prime}(c) ? \quad \frac{f(2)-f(-2)}{2-(-2)}=\frac{24+40}{4}=16$
graph $f^{\prime}(x)=5 x^{4}-6 x$ AND $g(x)=16$
A. 0
B. 1
C. 2
D. 3
E. 4 find how many times they Intersect on $(-2,2)$
3. Suppose a particle is moving along a coordinate line and its position at time t is given by $s(t)=\frac{9 t^{2}}{t^{2}+2}$. For what values of t in the interval $[1,4]$ is the instantaneous velocity equal to the average velocity?
fond where $s^{\prime}(t)=\frac{s(4)-5(1)}{4-1}=\frac{8-3}{3}$ on $(1,4)$
A. 2.00
B. 2.11
C. 2.22
D. 2.33
E. 2.44
4.

If f is a continuous function on the closed interval $[a, b]$, which of the following is NOT necessarily true?

$$
\begin{aligned}
\text { I. } & f \text { has a minimum on }[a, b] \\
\text { II. } & f \text { has a maximum on }[a, b] \\
\text { III. } & f^{\prime}(c)=0 \text { for } a<c<b
\end{aligned}
$$

(A) I only
(B) II only
(D) I and II only
(E) I, II, and III
(C) III only
5.

Let $f(x)$ be a differentiable function defined for all real numbers. The table below gives the value of $f(x)$ and its derivative $f^{\prime}(x)$ for several values of x.

x	-3	-2	-1	0	1	2	3
$f(x)$	8	5	0	1	0	5	8
$f^{\prime}(x)$	-6	-4	-2	0	2	4	6

Which of the following statements is true?
I. At $x=2$, the function is increasing. T
II. There is a relative minimum in the interval $-1 \leq x \leq 1$, but not necessarily at $x=0$. T
III. There is a relative maximum in the interval $-1 \leq x \leq 1$. F
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III
6.

If the derivative of a function f is given by $f^{\prime}(x)=\sin \left(x^{x}\right)$, then how many critical points does the function $f(x)$ have on the interval $[0.2,2.6]$?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4 find how many times $f^{\prime}(x)=0$ on $[0,2,2,6]$
7.

The derivative of f is given by $f^{\prime}(x)=e^{x}\left(-x^{3}+3 x\right)-3$ for $0 \leq x \leq 5$.
At what value of x is $f(x)$ an absolute minimum?
(A) For no value of x
(B) 0
(C) 0.653
(D) 1.604
(E) 5
8. If $f(x)=\left|\left(x^{2}-12\right)\left(x^{2}+4\right)\right|$, how many numbers in the interval $-2 \leq x \leq 3$ satisfy the conclusion of the Mean Value Theorem?
A. None
B. One
C. Two
D. Three

$$
\frac{f(3)-f(-2)}{3-(-2)}=
$$

$$
\frac{39-64}{5}
$$

$$
=-5
$$

$$
\text { graph } f^{\prime}(x) \text { USING NDERIV AND }
$$

$$
\begin{aligned}
& \text { fIND how } \\
& \text { ON }(-2,3)
\end{aligned}
$$

