Use the objectives below to help prepare for tests and quizzes. Develop a system to rate your mastery of each objective. You may also want to try the listed homework problems for each objective. Underlined problems should be done WITHOUT a calculator.

Chapter 2: Limits and Continuity

2.1 Rates of change and limits
___ Determine limits as \times approaches a constant using graphs and expressions p 67: 49; p 97: 5, 8
\qquad Find one sided limits, and understand their relation to general limits P66: 41
___ Use the properties of limits when finding limits
Pg 67: 55

2.2 Limits involving infinity

\qquad Find limits as \times approaches infinity
P 97: 6, 14
Find infinite limits as \times approaches a constant
P 76: 13,15
___ Use limits to find horizontal and vertical asymptotes
P 76: 55

2.3 Continuity

Understand continuity at a point and the various types of discontinuities
P 84: 1
Determine discontinuities from graphs and functions
P 95: 21-24
Understand the Intermediate Value Theorem and its practical implications P 86: 51

2.4 Rates of Change and Tangent Lines

Calculate average and instantaneous rates of change from equations P 98: 43, 44
Calculate average and instantaneous rates of change from graphs and tables P 137: 5 (and find average value on the interval from 1 to 3)

Chapters 3 \& 4: Derivatives

3.1 Derivative of a Function

Know and apply the three definitions of a derivative
___ Standard difference quotient
___ "x approaches a"
___ Symmetric difference quotient
Find left and right-hand derivatives
P 109: 31
Estimate derivatives from data or graphs
p. 108: 23

Given the graph of a function, sketch its derivative
P 151: 59
Write equations of lines tangent and normal to a function
P 107: 17

3.2 Differentiability

Know how derivatives might fail to exist
Given an equation, determine where its derivative is undefined

3.3 Rules for Differentiation

\qquad Apply differentiation rules to sums, differences, products and quotients P 150-2: 4 67
\qquad Find higher order derivatives

3.4 Velocity and Other Rates of Change

Calculate displacement, average velocity or average acceleration
Know the derivative position is instantaneous velocity
Know the derivative of velocity is acceleration
Understand speed as the absolute value of velocity
Apply derivatives to motion problems and other rate of change situations
P 138: 9; P 152: 81; p 191: 78
\qquad Know and use the derivatives of the six basic trigonometric functions Write equations of tangents and normals to trig functions P 148: 31

4.1 Chain Rule

___ Use the Chain Rule to finding derivatives of composite functions Understand the various notations for the chain rule including "inner/outer", decomposition into various functions, and function notation P 189: 10, 11

4.2 Implicit Differentiation

\qquad Find first and second derivatives of implicitly defined curves Find equations of tangent and normal lines to graphs of implicit relations P 189: 35, 41, 47
4.3 Derivatives of Inverse Trigonometric Functions
\qquad Find derivatives of the six inverse trig functions Understand and work with the relationship between any two inverse functions P 189: 24, 29
4.4 Derivatives of Exponential and Logarithmic Functions
\qquad Find derivatives of logarithmic and exponential functions Use the method of logarithmic differentiation to find derivatives p 189: 13, 19

Chapter 5: Applications of Derivatives

5.1 Extreme Values of Functions

___ Use derivatives to find local and absolute extrema

5.2 Mean Value Theorem

\qquad Know and apply the Mean Value Theorem
P 208: 1
Determine intervals of increasing and decreasing

Connecting f and f^{\prime} with the Graph of f
\qquad Determine intervals of concavity and locations of inflection points
Use the second derivative test to verify local extrema
Sketch graphs given information about f, f^{\prime} and $f^{\prime \prime}$
Interpret graphs to determine information about f, f^{\prime} and $f^{\prime \prime}$
P 220: 3, 7, 23, 37
P 263: 36; 265: 69

5.4 Modeling and Optimization

___ Use derivatives to solve max-min (optimization) problems
P 263: 45, 46
5.5 Linearization and Differentials
\qquad Write the linearization of a function at a given point and use it to estimate function values near that point
p 263: 39
Use differentials to estimate change
P 263: 40, 65a

5.6 Related Rates

Set up and solve related rates problems
P 264: 59, 61

Chapter 6: The Definite Integral

6.1 Estimating with Finite Sums

Use approximation methods LRAM, RRAM, \& MRAM to estimate the area under a curve Interpret the applied meaning of the result for area under a curve pg 279: 28

6.2 Definite Integrals

\qquad Write and evaluate a Riemann sum

Ex: $\int_{2}^{5} x^{2} d x=$
A) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(2+\left(\frac{3 k}{n}\right)^{2}\right) \cdot \frac{3}{n}$
B) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(2+\frac{3 k}{n}\right)^{2} \cdot \frac{3}{n}$
C) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\left(\frac{5 k}{n}\right)^{2}\right) \cdot \frac{5}{n}$
D) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\left(2+\frac{5 k}{n}\right)^{2}\right) \cdot \frac{5}{n}$
\qquad Understand the connection of a definite integral to net areaCompute the area under a curve using a numerical integration procedure

6.3 Definite Integrals and Antiderivatives

Apply properties of definite integrals as areas
Apply rules for definite integrals and find the average value of a function
p 325: 38
p 298: 1

6.4 Fundamental Theorem of Calculus

Apply the Fundamental Theorem of Calculus, part 1, to integral functions and graphs Use the Fundamental Theorem of Calculus, part 2, to evaluate definite integrals and compute enclosed areas.
P 325: 39, 40, 60
6.5 Trapezoidal Rule
___ Use the Trapezoidal Rule to estimate the area under a curve P 327: 58

Chapter 7: Differential Equations \& Mathematical Modeling

7.1 Slope Fields and Euler's Method

___ Construct a slope field Draw a solution curve on a slope field Connect a slope field to its differential equation Solve differential equations with initial conditions
Find general solutions to differential equations using antidifferentiation Use Euler's method to generate approximations of functions from differential equations P 379: 37, 39-42, 43
7.2 \& 7.3 Antidifferentiation by Substitution \& Antidifferentiation by Parts
___ Compute indefinite and definite integrals by the method of u-substitution Compute indefinite and definite integrals by the method of integration by parts Solve initial value problems using integration by parts Use tabular integration when appropriate Antidifferentiate using partial fraction decomposition

P 379: $5,6,8,9,13,19,20$

7.4 Exponential Growth and Decay

\qquad Apply integration techniques to solving exponential growth and decay problems Know and apply the Law of Exponential Change Solve separable differential equations
Solve applied problems involving half-life decay, compound interest, and cooling P 379: 31, 32, 55
7.5 Logistic Growth

Determine logistic functions from a differential equation
Work with a given logistic function to determine carrying capacity, initial value and rates of growth
P 381: 59, 61

