

Differentiability

A function is differentiable at a point X= a if the function is locally linear.

$$y = x^{2}$$
 $x = 2$

when will the derivative not exist?? not diff a x= 0 y = |x| x = 0[corner] lett & right derivatives

$$y = \chi \quad a \quad \chi = O$$

$$y = \chi$$
 $\partial \chi = O$

$$y = \sqrt[3]{x} \quad a) x = 0$$

do not equal

$$y = \frac{|x|}{x} \quad a) \quad x = 0$$

Theorem If f is differentiable at all x-values
the f must be continuous at all
$$x$$
-values.
ex: $f(x) = |x-3| + 5$ not diff @ $x=3$
corner

Ex.
$$f'(3)$$
 if $f(x) = e^{4x}$ (on calculator)
= $\frac{d}{dx} e^{4x}|_{x=3}$

Use calc. and write the equation of
the tangent line to
$$g(x) = \frac{2x}{1-x^2} = 0$$
 $x = 2$
 $m=1$ $(2, -4/3) = p \cdot 0 \cdot t$
 $y + 4(3 = 1 \cdot 1)(x-2)$