Evaluate.

1. $\int 2 x e^{x^{2}} d x \quad u=x^{2} \quad d u=2 x d x$

$$
\int e^{u} d u=e^{u}+C=e^{x^{2}}+C
$$

2. $\int_{0}^{\sqrt{\left(\frac{\pi}{2}\right)}} \frac{x \cos \left(x^{2}\right)}{\sqrt{\sin \left(x^{2}\right)}} d x$

$$
u=\sin \left(x^{2}\right) \quad u(\sqrt{1+1 / 2})=1 \quad u(0)=0
$$

$$
d u=\cos \left(x^{2}\right) \cdot 2 x d x \quad \frac{1}{2} d u=x \cos \left(x^{2}\right) d x
$$

$$
\frac{1}{2} \int_{0}^{1} \frac{1}{\sqrt{u}} d u=\left.\frac{1}{2}\left(2 u^{1 / 2}\right)\right|_{0} ^{1}=1^{1 / 2}-0^{1 / 2}
$$

3. $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sin \theta \cos ^{3} \theta d \theta \quad u=\cos \theta \quad u(\pi / 3)=1 / 2 \quad u(\pi / 4)=1 / \sqrt{2}$

$$
d u=-\sin \theta d \theta=-d u=\sin \theta d \theta
$$

$$
-\int_{\frac{\sqrt{2}}{2}}^{1 / 2} u^{3} d u=-\left.\frac{u^{4}}{4}\right|_{1 / \sqrt{2}} ^{1 / 2}=-\frac{1 / 16}{4}+\frac{1 / 4}{4}
$$

$$
=-\frac{1}{64}+\frac{1}{16}
$$

4. $\int x^{3} e^{5 x} d x$
cant so a this
time
5. Assume that the median price, P, of a home rose from $\$ 50,000$ in 1970 to $\$ 100,000$ in 1990. Let \dagger be the number of years since 1970. Find the median price of a home in 2003, assuming that the housing prices rise exponentially.

$$
\begin{gathered}
(0,50000) \quad(20,100000) \quad y=50000 e^{\frac{33 \ln 2}{20}} \\
y=50000 e^{k t} \quad y=156916.82 \\
100000=50000 e^{20 k} \quad y=20 k
\end{gathered}
$$

