\qquad

1. Given that $f(x)=\sum_{n=0}^{\infty} 2^{n} x^{n} . \quad 1+2 x+4 x^{2}+8 x^{3}+\ldots$
a) Find a power series for $f^{\prime}(x)$.

$$
\begin{aligned}
f^{\prime}(x)=\frac{0}{n}+\frac{1}{n} \cdot 2^{n}+2 \cdot 4 x+\frac{3}{n} \cdot 2 \cdot 4 x^{2} & \text { or } & \sum_{n=0} 2^{n} \cdot n x^{n-1} & 2^{0} \cdot 0=0
\end{aligned} \quad n=0
$$

b) Find a power series for $\int f(x) d x$.

$$
\begin{gathered}
C+x+x^{2}+\frac{4^{\frac{2}{3}}}{3} x^{3}+\frac{8}{4} x^{4}+\ldots \cdot \\
C+\sum_{n=0}^{\infty} \frac{2^{n} x^{n+1}}{n+1}
\end{gathered}
$$

2. Given that $f(x)=\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n}(x-3)^{n} .=1+\left(-\frac{1}{2}\right)(x-3)+\left(\frac{1}{4}\right)(x-3)^{2}-\left(\frac{1}{8}\right)(x-3)^{3}+\cdots$
a) Find a power series for $f^{\prime}(x)$.
$\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n} \cdot n(x-3)^{n-1} \quad F=$
$0+\frac{-1}{2}+\left(\frac{1}{4}\right) \cdot 2(x-3)-\frac{1}{8}(3)(x-3)^{2} / 1$
b) Find a power series for $\int f(x) d x$.

$$
C+\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n} \frac{(x-3)^{n+1}}{n+1}
$$

3. Given that $\mathrm{f}(\mathrm{x})=\frac{1}{1+\mathrm{x}^{2}} \approx 1-\mathrm{x}^{2}+\mathrm{x}^{4}-\mathrm{x}^{6}$, find the $7^{\text {th }}$ order MacLaurin Polynomial for $\mathrm{g}(\underline{\mathrm{x}})=\tan ^{-1} \mathrm{x}$.

$$
\begin{gathered}
g(x)=C+x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7} \\
g(0)=\tan ^{-1}(0)=0 \\
g(x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}
\end{gathered}
$$

$\operatorname{pg} 654: 20,21,27,37$
(20)

Converges : $x=5$
Conv abs: $x=5$
cons. cond: Never
(27) Conv: $\left(-\frac{1}{2}, \frac{1}{2}\right)$

Cons. abs: $\left(-\frac{1}{2}, \frac{1}{2}\right)$
conv. cond: Never
(21) Converges: $(-5,13$]

Conv. abs: $(-5,13)$
conv. cond: $x=13$
(37) Conv: $(-h, h)$

Conv. abs.: $(-h, n)$
Conv. cond: Never

