1.d 2.c 3.a 4. b
5. $f(x)=\frac{\sqrt{x}}{4} \quad c=4$

$$
f(4)=1 / 2 \quad f^{\prime}(x)=\frac{1}{8 \sqrt{x}} \quad f^{\prime}(4)=1 / 16 \quad P_{1}=\frac{1}{2}+\frac{1}{16}(x-4)
$$

$1^{\text {st }}$ Dequee polynomial Approx

9. | x | 0 | 0.8 | 0.9 | 1 | 1.1 | 1.2 | 2 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | und | 4.4721 | 4.2164 | 4 | 3.8139 | 3.6575 | 2.8284 |
| $P_{2}(x)$ | 7.5 | 4.46 | 4.215 | 4 | 3.815 | 3.66 | 3.5 |

$$
\begin{aligned}
& P_{2}(x)=4-2(x-1)+\frac{3}{2}(x-1)^{2} \\
& f(x)=4 \cdot x^{-1 / 2} \quad f(1)=4 \\
& f^{\prime}(x)=-2 x^{-3 / 2} \quad f^{\prime}(1)=-2 \\
& f^{\prime \prime}(x)=3 x^{-5 / 2} \quad f^{\prime \prime}(1)=3
\end{aligned}
$$

13. $f(x)=e^{4 x} \quad n=4 \quad$ mactaurin $c=0$

$$
\begin{aligned}
P_{4}(x) & =1+4 x+16 \cdot \frac{1}{2} x^{2}+64 \cdot \frac{1}{2} \cdot \frac{1}{3} x^{3}+256 \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4} x^{4} \\
& =1+4 x+8 x^{2}+\frac{64}{3!} x^{3}+\frac{256}{4!} x^{4}
\end{aligned}
$$

18. $f(x)=\cos \pi x \quad n=4$

$$
\begin{aligned}
& f(x)=\cos \pi x \\
& f^{\prime}(x)=-\pi \sin \pi x \\
& f^{\prime \prime}(x)=-\pi^{2} \cos \pi x \\
& f^{\prime \prime \prime}(x)=\pi^{3} \sin \pi x \\
& f^{(4)}(x)=\pi^{4} \cos \pi x
\end{aligned}
$$

$$
P_{4}(x)=1+01-\pi^{2} \cdot \frac{1}{2} x^{2}+0 \cdot \frac{1}{2} \cdot \frac{1}{3} x^{3}+\pi^{4} \cdot \frac{1}{2} \cdot \frac{1}{3} \frac{1}{4} x^{4} f^{\prime \prime}(x)=-\pi^{2} \cos \pi x
$$

$$
P_{4}(x)=41-\frac{\pi^{2} x^{2}}{2!}+\frac{\pi^{4} x^{4}}{4!}
$$

21. $f(x)=\frac{1}{x+1} \quad n=5 \quad f(x)=(x+1)^{-1} \quad f^{\prime}=-(x+1)^{-2} \quad f^{\prime \prime}=2(x+1)^{-3}$

$$
\begin{aligned}
P_{5}(x) & =1-x+\frac{2 x^{2}}{2}-\frac{6 x^{3}}{3!}+\frac{24 x^{4}}{4!}-\frac{120 x^{5}}{5!} \quad f^{\prime \prime \prime}=-6(x+1)^{-4} f^{(4)}(x)= \\
& =1-x+x^{2}-x^{3}+x^{4}-x^{5}(x)=-120(x+1)^{-6}
\end{aligned}
$$

29. $f(x)=\ln x \quad n=4 \quad c=2$

$$
P_{4}(x)=\ln 2+\frac{1}{2}(x-2)+-\frac{1}{4} \frac{(x-2)^{2}}{2!}+\frac{1}{4} \frac{(x-2)^{3}}{3!}-6 \cdot \frac{1}{16} \frac{(x-2)^{4}}{4!}
$$

$$
=\ln 2+\frac{(x-2)}{2}-\frac{(x-2)^{2}}{8}+\frac{(x-2)^{3}}{4 \cdot 3!}-\frac{3(x-2)^{4}}{8 \cdot 4!}
$$

$$
\begin{aligned}
f(x) & =\ln x \\
f^{\prime} & =\frac{1}{x} \\
f^{\prime \prime} & =-x^{-2} \\
f^{\prime \prime \prime} & =2 x^{-3} \\
f^{(4)} & =-6 x^{-4}
\end{aligned}
$$

41. $f(x)=e^{4 x} \quad f(1 / 4)$

$$
\begin{aligned}
& \text { From Exercise \#B } \\
& P_{4}(x)=1+4 x+8 x^{2}+\frac{64}{3!} x^{3}+\frac{256}{4!} x^{4}
\end{aligned}
$$

$$
\approx 2.708
$$

63. The accuracy should increase and expand out from the center as the deque increases.but does have a limit.
be. $f(x)=\sin x$

$$
\begin{aligned}
f^{\prime} & =\cos x \\
f^{\prime \prime} & =-\sin x \\
f^{\prime \prime \prime} & =-\cos x \\
f^{(4)} & =\sin x \\
f^{(5)} & =-\cos x
\end{aligned}
$$

$$
\begin{array}{ll}
\text { a. } P_{5}=0+x \frac{0 x^{2}}{2!}-1 \cdot \frac{x^{3}}{3!}+\frac{0 x^{4}}{4!}+\frac{1 x^{5}}{5!} & P_{4}=1+0+\frac{-x^{2}}{2!}+0 \frac{x^{3}}{3!}+\frac{x^{4}}{4!} \\
P_{5}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} & \rightarrow P_{4}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} \\
P_{5}^{\prime}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} & \cos x ? ? ? \\
\text { b. } P_{6}(x)=-x+\frac{x^{3}}{3!}-\frac{x^{5}}{5!}-\sin x ? ? ? & P_{6} 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!} \quad \cos x
\end{array}
$$

$$
\text { c. } \begin{aligned}
& P_{4}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!} \\
& P_{4}^{\prime}(x)=0+1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!} \text { yep } e^{x}
\end{aligned}
$$

