3. $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$

$$
a_{n}>0
$$

$$
b_{n}>0
$$

$$
\begin{array}{ll}
a_{n}= & \frac{1}{2 n-1}=1, \frac{1}{3}, \frac{1}{5} \ldots \\
b_{n}= & \frac{1}{2 n}=1, \frac{1}{4}, \frac{1}{6} \ldots a_{n} \\
& \sum b_{n} \Rightarrow \text { diverges } \quad \therefore a_{n} \text { diverges }
\end{array}
$$

Divulges by comparison test
4. $\sum_{n=1}^{\infty} \frac{1}{3 n^{2}+2}$

$$
\begin{aligned}
& a_{n}=\frac{1}{3 n^{2}+2} \quad \frac{1}{5}, \frac{1}{14}, \frac{1}{29} \quad b_{n}>a_{n} \\
& b_{n}=3 \frac{1}{3 n^{2}} \quad 1, \frac{1}{4}, \frac{1}{9} \\
& \sum \frac{1}{3 n^{2}} \Rightarrow \text { converges } \therefore \sum \frac{1}{3 n^{2}+2}
\end{aligned}
$$

Direct comparison test $\sum_{n=1}^{\infty} \frac{1}{3 n^{2}+2}$ converges
5. $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}-1} \quad a_{n}=\frac{1}{\sqrt{n}-1} \quad p=1 / 2$ divers
by p-series diverges
$\therefore \quad \sum_{n=2}^{\infty} \frac{1}{\sqrt{n-1}}$ diverges by comparison test
6. $\sum_{n=0}^{\infty} \frac{4^{n}}{5^{n}+3} \quad a_{n}=\frac{4^{n}}{5^{n}+3} \quad b_{n}=\frac{4^{n}}{5^{n}}=\left(\frac{4}{5}\right)^{n}$

$$
b_{n}>a_{n}
$$

C converges geo $|r|>1$
$\sum_{n=0}^{\infty} \frac{4^{n}}{5^{n}+3}$ converges by com Direct parson test $^{\text {D es }}$
8. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}+1}} \quad a_{n}=\frac{1}{\sqrt{n^{3}+1}} \quad b_{n}=\frac{1}{\sqrt{n^{3}}}=\frac{1}{n^{3 / 2}}$

$$
b_{n}>a_{n}
$$

N $p>1$ p-seies test converges
$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}+1}}$ converges
by Direct compaison test
10. $\sum_{n=1}^{\infty} \frac{1}{4 \sqrt[3]{n}-1} \quad a_{n}=\frac{1}{4 \sqrt[3]{n}-1} \quad b_{n}=\frac{1}{4 \sqrt[3]{n}}$

$$
a_{n}>b_{n}
$$

$\} \sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n}-1}$ Diverges diveres
By Drect Compaiison test
11. $\sum_{n=0}^{\infty} e^{-n^{2}}=\sum_{n=0}^{\infty} \frac{1}{e^{n^{2}}}$
$a_{n}=\frac{1}{e^{n^{2}}}$

$$
b_{n}=\frac{1}{e^{n}}=\left(\frac{1}{e}\right)^{n}
$$

$$
\frac{1}{1}, \frac{1}{e}, \frac{1}{c^{4}}, \frac{1}{e^{i}}
$$

convinges by direct comparison

$$
b_{n}>a_{n}
$$

$$
1, \frac{1}{e}, \frac{1}{e^{2}}, \frac{1}{c^{3}}
$$

$\sum b_{n} \rightarrow \begin{gathered}\text { converses } \\ |r|=\left|\frac{1}{e}\right|<1\end{gathered}$ by 6 cometric
12. $\sum_{n=1}^{\infty} \frac{3^{n}}{2^{n}-1}$

$$
a_{n}=\frac{3^{n}}{2^{n}-1}
$$

$b_{n}<a_{n}$

$$
b_{n}=\left(\frac{3}{2}\right)^{n}\left\{\left.\begin{array}{l}
\sum b_{n} \\
\text { diveajes }|r|=\left\lvert\, \frac{3}{2}\right. \\
\text { by oveometric }
\end{array} \right\rvert\,>1\right.
$$

By direct comparison test $\sum_{n=1}^{\infty} \frac{3^{n}}{2^{n}-1}$
B. $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1} \quad a_{n}=\frac{n}{n^{2}+1} \quad b_{n}=\frac{n}{n^{2}}=\frac{1}{n}$

$$
\lim _{n \rightarrow \infty} \frac{\frac{n}{n^{2}+1}}{1 / n}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+1}=1
$$

$b_{n} p \leq 1$ Diveres Diveres
p-seiles tect
$\sum_{n=1}^{\infty} \sum_{n+1}^{n}$ Diveryes \Rightarrow limit comparison test
15. $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n^{2}+1}} \quad a_{n}=\frac{1}{\sqrt{n^{2}+1}} \quad b_{n}=\frac{1}{\sqrt{n^{2}}}=\frac{1}{\ln 1}$
$\approx p=1$-2enies test Diverses

$$
\begin{aligned}
& \text { 15. } \sum_{n=0} \sqrt{n^{2}+1} \quad a_{n}=\overline{\sqrt{n^{2}+1}} \quad b_{n}=r_{n}^{2} \quad \ln \mid \\
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\ln 1}{\sqrt{n^{2}+1}}=1
\end{aligned}
$$

Diverces $\sum_{n=0} \frac{1}{\sqrt{n^{2}+1}}$ Iimit comparison test
16. $\sum_{n=1}^{\infty} \frac{2^{n}+1}{5^{n}+1} \quad a_{n}=\frac{2^{n}+1}{5^{n}+1} \quad b_{n}=\frac{2^{n}}{5^{n}}=\left(\frac{2}{5}\right)^{n} \quad b_{n}$ coometric converses $r=2 / 5<1$ \uparrow converses

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{2^{n}+1}{5^{n}+1} \cdot \frac{5^{n}}{2^{n}} \\
& \lim _{n \rightarrow \infty} \frac{2^{n}+1}{5^{n}+1} \cdot \lim _{n \rightarrow \infty} \frac{5^{n}}{2^{n}}
\end{aligned}
$$

LHop

$$
\lim _{n \rightarrow \infty} \frac{2^{n} \ln 2}{5^{n} \cdot \ln 5} \cdot \lim _{n \rightarrow \infty} \frac{5^{n} \cdot \ln 5}{2^{n} \ln 2}=1 \quad \text { by } \lim _{\sum_{n=1}^{\infty} t} \frac{2^{n}+1}{5^{n}+1} \text { comparison test }
$$

(22) $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n}\right) \quad b_{n}=\frac{1}{n} \sum \sum b_{n}$

$$
\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{n}\right)^{90}}{(1 / n)}
$$

$\left\{\begin{array}{l}\text { Diverge } p \leq 1 \\ \text { harmonic }\end{array}\right.$

23. $C \rightarrow$ Diverges 24. b Diverges 25. $f \rightarrow$ converges
26. g converfes 27. a. Diverges 28. d convenfes

$$
\lim _{n \rightarrow \infty} \frac{n^{3}}{n^{2} g}=1 \quad \frac{1}{n^{3}} p>1
$$

29. e orf $\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{x}{\left(x^{2}+1\right)^{2}} d x \quad d u=x^{2}+1 \quad u(b)=b^{2}+1 \quad u(1)=4$

$$
\begin{aligned}
& \lim _{b \rightarrow \infty} \int_{\frac{1}{2}}^{\frac{x}{\left(x^{2}+1\right)^{2}} d x} d u=2 x d x \\
& \frac{1}{2} \lim _{b \rightarrow \infty} \int_{4}^{b^{2}+1} u^{-2} d u=\lim _{b \rightarrow \infty}-\left.\frac{1}{2} u^{-1}\right|_{4} ^{b^{2}+1}=\lim _{b \rightarrow \infty} \frac{-1}{2\left(b^{2}+1\right)}+\frac{1}{2 \cdot 4} \quad \text { converges }
\end{aligned}
$$

or

$$
a_{n}=\frac{x}{\left(x^{2}+1\right)^{2}} \quad b_{n}=\frac{x}{x^{4}}=\frac{1}{x^{3}} \quad b_{n}>a_{n}
$$

$$
\frac{1}{4}, \frac{2}{25}
$$

$$
1, \frac{1}{8}
$$

b_{n} convuses ble $p>1$
30. $\sum_{n=1}^{\infty} \frac{3}{n(n+3)}$ f $\quad a_{n}=\frac{3}{n(n+3)} \quad b_{n}=\frac{3}{n^{2}}$

$$
\frac{3}{4}, \frac{3}{10}, \frac{3}{18}
$$

3, $\frac{3}{4}, \frac{3}{9}$

$$
b_{n}>a_{n}
$$

b_{n} convers
blc $p>2$
49. False (look o) \# 30)
50. True
51. True
52. False a divergenl: conversent series togethen
53. True 54 False

