9.2 Day 1 (Friday 1/24)

Monday, January 20, 2020 9:06 AM
Evaluate: $\lim _{x \rightarrow 3} \frac{-\frac{1}{3}(x-2)^{2}+\frac{1}{3}}{2 \sin (x-3) \rightarrow 0}$

$\begin{array}{ll}\text { L'Hôpital Rule } \\ \text { L'Hospital } & \text { Rule }\end{array}$
L'Hospital Rule

$$
\begin{aligned}
& f(x)=-\frac{1}{3}(x-2)^{2}+\frac{1}{3} \\
& f^{\prime}(x)=-\frac{2}{3}(x-2) \cdot 1 \\
& g(x)=2 \sin (x-3) \\
& g^{\prime}(x)=2 \cos (x-3) \\
& \lim _{x \rightarrow 3} f^{\prime}(x)=-2 / 3 \quad \lim _{x \rightarrow 3} g^{\prime}(x)=2 \\
& \lim _{x \rightarrow 3} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\frac{-2 / 3}{2}=-1 / 3
\end{aligned}
$$

I'Hó pital's Rule:
If $f(a)=g(a)=0$, or if both are $\pm \infty$
then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$

* use only for indeterminate forms $\frac{0}{0}$ or $\frac{\infty}{00}$ Ext! $\lim _{x \rightarrow 0} \frac{e^{x}-1}{5 x} \boldsymbol{v}_{0}^{0} n_{n}^{n}=\lim _{x \rightarrow 0} \frac{e^{x}}{5}=\frac{1}{5} \quad \|$

$$
\text { Ex 2! } \lim _{x \rightarrow \infty} \frac{4 x^{2}+12 x}{3 x^{2}-5} \lambda_{\infty}^{\infty} n_{n}^{n}=\lim _{x \rightarrow \infty} \frac{8 x+12 \pi^{\infty}}{6 x} \searrow_{\infty}^{n}
$$

$$
=\lim _{x \rightarrow \infty} \frac{8}{6}=\frac{4}{3}
$$

Ex 3: $\lim _{x \rightarrow 3} \frac{\sqrt{1+x}-2}{x-3} \lambda_{0}^{0} \lim _{x \rightarrow 3} \frac{\frac{1}{2}(1+x)^{-1 / 2}}{1}=\frac{1}{4}$
You try... $\lim _{x \rightarrow 0} \frac{3 \sin x-4 x^{2}}{2 \cos x-2} \lambda_{0}^{0}=\lim _{x \rightarrow 0} \frac{3 \cos x-8 x}{-2 \sin x}$ y $\pi^{3}=\frac{3}{0}=d n e$
Try again $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1-\frac{x}{2}}{x^{2}} \geqslant x_{0}^{0}$

$$
\lim _{x \rightarrow 0} \frac{\frac{1}{2}(1+x)^{-1 / 2}-\frac{1}{2}}{2 x} \geqslant 0 \quad \lim _{x \rightarrow 0} \frac{-\frac{1}{4}(1+x)^{-3 / 2}}{2}=-\frac{1}{8}
$$

Ex! $\quad \lim _{x \rightarrow 0^{+}} \frac{\sin x}{x^{2}} \geqslant 0 \quad \lim _{x \rightarrow 0^{+}} \frac{\cos x}{2 x} a^{\prime \prime} \frac{\operatorname{smal}_{x}^{\prime \prime}}{x}=0$

Ex. $\lim _{h \rightarrow 0} \frac{\ln (e+h)-1}{h} \nu_{0}^{0} \frac{\frac{1}{e+h}(1)}{1}=\frac{1}{e}$
or $f(x)=\ln x \quad f^{\prime}(e)=\frac{1}{e}$

$$
\operatorname{iim} f(a+h)-f(a)=f^{\prime}(\pi)
$$

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=f^{\prime}(a)
$$

