Permutation Counting Formula
Sometimes, we have more objects than we have "spots/positons" to fill. For instance, we may wish to consider how many ways 3 prize winners may be selected from a group of 11 entrants. In these instances, we are interested in using n objects to fill r blanks, where $\mathrm{n}>\mathrm{r}$.

Permutations of n objects taken r at a time:

$$
\begin{aligned}
\frac{n!}{(n-r)!} & =n \operatorname{Pr} \\
0 & \leq r \leq n
\end{aligned}
$$

Evaluate each of the following permutations.

1. Find the number of ways to arrange 5 objects chosen from a group of 8 objects.

$$
\begin{aligned}
8 P_{5}=\frac{8!}{(8-5)!}=\frac{8!}{3!} & =\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1} \\
& =8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \\
& =6720
\end{aligned}
$$

2. Sadly, only nine students entered Mr. V.'s annual Pi-Day Costume Contest. How many ways can he select three students to be the "Best Dressed", "First Runner-Up" and "Second Runner-Up"?

$$
q P_{3}=\frac{9!}{6!}=9.8 .7=504
$$

3. A Precalculus classroom has 27 desks and 21 students. How many different seating charts are possible?

$$
27 P_{21}=\frac{27!}{6!}=27.26 \cdot 25 \ldots 7!
$$

4. Using seven different Scrabble tiles, how many "words" or sequences can be made that use:
a. Three different letters?

$$
7 P_{3}=\frac{7!}{4!}=7 \cdot 6 \cdot 5
$$

b. Four different letters?

$$
7^{P_{4}}=\frac{7!}{3!}=7 \cdot 6 \cdot 5 \cdot 4
$$

c. Explain why the answer to part b . is four times the answer to part a .

$$
\begin{aligned}
& 4 \text { more letters "than can be used for the } 4^{\text {th }} \\
& \text { letter in the "word" }
\end{aligned}
$$

5. Using seven different Scrabble tiles, how many "words" or sequences can be made that use:
a. Six different letters?

$$
7 P_{6}=\frac{7!}{1!}=2 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2
$$

b. Seven different letters?

$$
7 P 7=\frac{7!}{0!}=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1
$$

c. Explain why the answer to parts a. and b. are the same.

$$
\text { There Is only letter remaining for the } 7^{\text {Th }} \text { letter. }
$$

6. A filing system at a museum assigns each artifact a unique code consisting of two letters followed by three digits. How many codes are possible if neither letters nor digits may be repeated?

$$
\begin{aligned}
& 26 P_{2} \cdot{ }_{10} P_{3} \\
& 26 \cdot 25 \cdot 10 \cdot 9 \cdot 8
\end{aligned}
$$

Bonus! How would your answer change if the letters and digits could appear in any order?

$$
\begin{aligned}
& 26 \rho_{2} \cdot 10 \rho_{3} \cdot 5 \rho_{5} \\
& 26 \cdot 25 \cdot 10 \cdot 9 \cdot 8 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1
\end{aligned}
$$

Combination Counting Formula

In many applications we are only interested in the ways to select the r objects, regardless of the order in which we arrange them. These unordered selections are called objects taken r at a time.

Combinations of \boldsymbol{n} objects taken r at a time:

$$
\frac{n!}{(n-r)!\cdot r!}=n C r
$$

Evaluate each of the following combinations:

1. A student has 8 different colored pieces of paper and would like to select 3 of them for a class project. How many different color combinations are possible?

$$
8<3=\frac{8!}{5!\cdot 3!}=\frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1}
$$

2. A standard deck of playing cards has 52 cards. How many 5 -card poker hands can be dealt from the deck?

$$
{ }_{52} C_{5}=\frac{52!}{47!\cdot 5!}=\frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}
$$

3. For the annual MathRules party, Mr. V. is buying treats! At the store, he finds 7 varieties of soda and 10 varieties of snacks. How many combinations of 3 soda options and 4 snack options are possible?

$$
7 C 3 \cdot 10 C 4=\frac{7!}{41 \cdot 3!} \cdot \frac{10!}{6!\cdot 4!}
$$

4. Out of a group of 9 students, 4 of them are to serve asacommittee to speak on behalf of the group.
a. How many different committees may be formed?

$$
q C_{4}=\frac{9!}{5!\cdot 4!}
$$

b. After much discussion, it is determined that a committee of 5 representatives would be preferable. How many different 5 person committees may be formed from the group of 9 students?

$$
9 C 5=\frac{9!}{41 \cdot 5!}
$$

a. How do your answers to parts a and b compare to one another? Explain why this makes sense:

Algebraically: Based on the formula for calculating combinations

Conceptually: Based on your understanding of combinations

$\checkmark S$.

Challenge
You have 10 friends, but Pete and Sarah do not get along. In how many ways can you invite 6 of your friends to dinner so that Pete and Sarah are not both included?

Combination or Permutation??

1. A president, vice-president, and secretary are chosen from a 25 -member garden club

2. A cook chooses 5 potatoes from of a bag of 12 potatoes to make a potato salad

$$
C
$$

3. A teacher makes a seating chart for 22 students in a classroom with 30 desks

The figure below represents a bracelet with colored beads on it. How many ways can I arrange the beads?

Would the number of arrangements change if there was a clasp on the bracelet?

