8.2B Lecture Notes, Ellipses

Write an equation in standard form for each ellipse.
a) Foci at $(\pm 3,0)$; endpoints of major axis $(\pm 5,0)$

$$
\begin{aligned}
& a=5 \quad c=3 \quad b=4 \\
& \frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{aligned}
$$

b) Foci at $(0, \pm 4)$; endpoints of major axis $(0, \pm 7)$

$$
\begin{aligned}
& a=7 \quad c=4 \quad b=\sqrt{33} \approx 5.7 \\
& \frac{x^{2}}{33}+\frac{y^{2}}{49}=1
\end{aligned}
$$

c) Foci at $(0, \pm 3)$; major axis length $=12$

$$
\begin{aligned}
& a=6 \quad c=3 \quad b=\sqrt{27} \approx 5.2 \\
& \frac{x^{2}}{27}+\frac{y^{2}}{36}=1
\end{aligned}
$$

d) Endpoints of major axis at $(\pm 4,0)$; Endpoints of minor axis at $(0, \pm 3)$

$$
\begin{aligned}
& a=4 \quad b=3 \\
& \frac{x^{2}}{16}+\frac{y^{2}}{9}=1
\end{aligned}
$$

e) The endpoints of one axis are $(-2,-3)$ and $(-2,7)$ and of the other are $(-4,2)$ and $(0,2)$

$$
\begin{aligned}
& a=5 \quad b=2 \\
& \frac{(x+2)^{2}}{4}+\frac{(y-2)^{2}}{25}=1
\end{aligned}
$$

f) The major axis endpoints are $(-5,2)$ and $(3,2)$; the minor axis is length 6 ,

$$
\begin{aligned}
& a=4 \quad b=3 \\
& \frac{(x+1)^{2}}{16}+\frac{(y-2)^{2}}{9}=1
\end{aligned}
$$

g) State the location of the center, the length of the semi-major and semi-minor axis, and write in parametric form: $\frac{x^{2}}{36}+\frac{y^{2}}{25}=1$

$$
\begin{aligned}
& x=6 \cos t \\
& y=5 \sin t
\end{aligned}
$$

h) State the location of the center, the length of the semi-major and semi-minor axis, and write in parametric form: $\frac{(x-2)^{2}}{16}+\frac{(y+1)^{2}}{12}=1$.

$$
c(2,-1), a=4, b=\sqrt{12}
$$

$$
\begin{aligned}
& x=2+4 \cos t \\
& y=-1+\sqrt{12} \operatorname{sIN} t
\end{aligned}
$$

i) Put the equation. $3 x^{2}+5 y^{2}-12 x+30 y+42=0$ in to standard form.

$$
\begin{aligned}
& 3 x^{2}-12 x+=+5 y^{2}+30 y+=-42 \\
& 3\left(x^{2}-4 x+4\right. \\
&)+5\left(y^{2}+6 y+9\right)=-42 \\
&+12 \\
& 3(x-2)^{2}+5(y+3)^{2}=15 \quad+45 \\
& \frac{(x-2)^{2}}{5}+\frac{(y+3)^{2}}{3}=1
\end{aligned}
$$

typo

$$
\begin{aligned}
& 4\left(x^{2}-8 x+=y^{2}+16 y+==128\right. \\
& 4\left(x^{2}-8 x+16\right)+y^{2}+16 y+64=128 \\
& 4(x-4)^{2}+(y+8)^{2}=256 \\
& +64 \\
& \\
& \frac{(x-4)^{2}}{64}+\frac{(y+8)}{256}=1
\end{aligned}
$$

