Calculus AB

Name

NO CALCULATOR! All by hand!

3. Find the area between
$$x = y^2 + 4y - 22$$
 and $x = 3y + 8$.
 $y^2 + 4y - 22 = 35 + 7$
 $y^2 + 4y - 30 = 0$
 $(y + (e) (y - 5) = 0$
 $y = -1e$ $y = 5$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $y = -1e$ $y = 5$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$
 $\int_{-6}^{5} (3y + 8) - (y^2 + 4y - 22) dy$

4. Find the area of the region bounded by the line y = 2 and the graph of $y = \sec^2 x$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$.

