\qquad
NO CALCULATOR! All by hand!

1. Find the area enclosed by $f(x)=x^{2}+2$ and $g(x)=2 x+5$.

$$
\begin{aligned}
& x^{2}+2=2 x+5 \\
& x^{2}-2 x-3=0 \\
& (x-3)(x+1)=0 \\
& x=3 \quad x=-1
\end{aligned}
$$

$$
\int_{-1}^{3}\left(-x^{2}+2 x+3\right) d x
$$

$$
-\frac{x^{3}}{3}+x^{2}+\left.3 x\right|_{-1} ^{3}=102 / 3
$$

2. Find the area between $y=\sin x$ and $y=\cos x$ over the interval $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$.

3. Find the area between $x=y^{2}+4 y-22$ and $x=3 y+8$.

$$
\begin{aligned}
& y^{2}+4 y-22=3 y+8 \\
& y^{2}+y-30=0 \\
& (y+6)(y-5)=0 \\
& y=-6 \quad y=5 \\
& \int_{-6}^{5}\left[(3 y+8)-\left(y^{2}+4 y-22\right)\right] d y \\
& \int_{-6}^{5}\left(-y^{2}-y+30\right) d y=-\frac{y^{3}}{3}-\frac{y^{2}}{2}+\left.30 y\right|_{-6} ^{5}=221.8 \overline{3}
\end{aligned}
$$

4. Find the area of the region bounded by the line $y=2$ and the graph of $y=\sec ^{2} x$ for $-\frac{\pi}{2}<x<\frac{\pi}{2}$.

