Pre-Calc WS Section 4.7 Name ____

Complete the two charts below without using your calculator.

	Domain	Range	Quadrants
$\sin^{-1}\theta$	EIIJ	广型 , 型) I,亚
$\cos^{-1} \theta$	[-1, 1]	[O,7]	II
$\tan^{-1}\theta$		(一型, 型)	
$\csc^{-1} \theta$	(-0,-1) v[(a) [-7/0)	(0, 1/2) I IV
$\sec^{-1} \theta$	(-00,-1] U [1,00)	[0,7/2)U	(1/2 / T) II
$\cot^{-1}\theta$		(O, M)	

Without using your calculator, evaluate the following. (Draw a picture if needed.)

1)
$$\cos^{-1}\left(\frac{\sqrt{2}}{2}\right) = \sqrt{\frac{1}{4}}$$

2)
$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = 5\frac{\pi}{6}$$

3)
$$tan^{-1}(-1) = -\frac{\pi}{4}$$

4)
$$\tan^{-1}\left(\frac{\sqrt{3}}{3}\right) = \frac{\pi}{4}$$

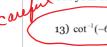
5)
$$\arcsin\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\sqrt{1}}{3}$$

6)
$$\cot \left[\sin \frac{1}{2}\right]$$
 $\cot \left(\frac{\pi}{u}\right) = \frac{\sqrt{3}}{2} = \sqrt{3}$

7)
$$\sin\left(\cos^{-1}\frac{1}{2}\right)$$

$$S(n\left(\frac{n\pi}{3}\right) = \frac{\sqrt{3}}{2}$$

8)
$$\tan \left[\frac{\sin^{-1} \left(-\frac{1}{2} \right)}{2} \right]$$


$$\tan \left(-\frac{\pi \tau}{4e} \right) = \frac{-\frac{1}{2}}{\frac{13}{2}} = -\frac{1}{\sqrt{3}}$$

9)
$$\sec\left(\arccos\frac{1}{2}\right)$$

11.
$$\sin^{-1}\left(\cos\frac{7\pi}{4}\right)$$

12. $arccot\left[\csc\left(-\frac{\pi}{6}\right)\right]$

 $Sin^{-1} \left(\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{4}}{2}$ Use your calculators to evaluate the following. Round your answer to the nearest hundredth.

13)
$$\cot^{-1}(-6.1)$$
 14) $\cos^{-1}\left(\frac{2}{3}\right)$ 15) $\sec^{-1}(1.99)$

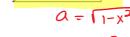
16)
$$\tan^{-1} \left(\frac{5}{7} \right)$$

2,432

New type of problem...

oraic expression Steps:

1) Draw a right triangle


WH Find an algebraic expression equivalent to the given expression.

$$\cos(\sin^{-1}x)$$
 Cos Θ

$$dan\theta = S$$

 $dan\theta = S$
 $Sin'(X) Sin'(X)$

2) Make $\sin \theta = x$ WHY?? _

3) Solve for missing side using Pythagorean Theorem

4) Evaluate original problem.

1)
$$\cos\left(\tan^{-1}x\right)$$

2) $\cot(\arccos x)$

3)
$$\sin(\arccos 6x)$$

SIn-1 (-12)