

$$
\begin{aligned}
V & =\beta h \\
& =\sum A(x) \cdot \Delta x
\end{aligned}
$$

If $A(x)$ is changing withe, Then

$$
\begin{aligned}
V & =\operatorname{Lim}_{\Delta x \rightarrow 0} \sum A(x) \cdot \Delta x \\
& =\int_{a}^{b} A(x) d x
\end{aligned}
$$

EXAMPLE 1 A Square-Based Pyramid
A pyramid 3 m high has congruent triangular sides and a square base that is 3 m on each side. Each cross section of the pyramid parallel to the base is a square. Find the volume of the pyramid. SOLUTION

So, $A(x)=x^{2}$

$$
\therefore V=\int_{0}^{3} x^{2} d x
$$

$$
=\frac{1}{3} x^{3} \int_{0}^{3}=9 m^{3}
$$

Note

$$
\beta=x^{2} \quad h=x
$$

$$
\therefore \quad V=\frac{1}{3} \cdot x^{2} \cdot x=\frac{1}{3} \beta h
$$

1. The solid lies between planes perpendicular to the x-axis at $x=-1$ and $x=1$. The cross sections perpendicular to the x-axis between these planes run from the semicircle $y=-\sqrt{1-x^{2}}$ to the semicircle $y=\sqrt{1-x^{2}}$. vote: $y^{2}=1-x^{2}$ or $x^{2}+y^{2}=1$
a. The cross sections are circles with diameters in the xy-plane.

$$
\begin{aligned}
& A(x)=\pi\left(\sqrt{1-x^{2}}\right)^{2}=\pi\left(1-x^{2}\right) \\
& V^{2}=\int_{-1}^{1} A(x) d x=2 \int_{0}^{1} \pi\left(1-x^{2}\right) d x \\
& =2 \pi\left[x-\frac{1}{3} x^{3}\right]_{0}^{1}=2 \pi\left(\frac{2}{3}\right)=\frac{4}{3} \pi
\end{aligned}
$$

vote: $V=\frac{4}{3} \pi r^{3}$
b. The cross sections are squares with sides in the xy-plane.

$$
\begin{aligned}
& \text { n the xy-plane. } \\
& A(x)=\left(2 \sqrt{1-x^{2}}\right)^{2}=4\left(1-x^{2}\right) \\
& V=2 \int_{0}^{1} 4\left(1-x^{2}\right) d x=8\left[x-\frac{1}{3} x^{3}\right]_{0}^{1}=\frac{16}{3}
\end{aligned}
$$

c. The cross sections are squares with diagonals in the xy-plane.

$$
\begin{aligned}
A(x)=\frac{1}{2} d_{1} \cdot d_{2} & =\frac{1}{2} \cdot\left(2 \sqrt{1-x^{2}}\right)^{2} \\
& =\frac{1}{2} \cdot 4\left(1-x^{2}\right)=2\left(1-x^{2}\right) \\
V=2 \int_{0}^{1} 2\left(1-x^{2}\right) d x & =4\left[x-\frac{1}{3} x^{3}\right]_{0}^{1} \\
& =\frac{8}{3}
\end{aligned}
$$

2. The solid lies between planes perpendicular to the x-axis at $x=0$ and $x=4$. The cross sections perpendicular to the x-axis between these planes run from $y=-\sqrt{x}$ to $y=\sqrt{x}$.
a. The cross sections are circles with diameters in the xy-plane.

$$
A(x)=\pi \cdot(\sqrt{x})^{2}=\pi x^{2}
$$

$$
V=\int_{0}^{4} \pi x^{2} d x=\pi\left[\frac{1}{3} x^{3}\right]_{0}^{4}
$$

$$
=
$$

b. The cross sections are squares with sides in the xy-plane.

$$
A(x)=(2 \sqrt{x})^{2}=4 x
$$

$$
V=\int_{0}^{4} 4 x d x=4\left[\frac{1}{2} x^{2}\right]_{0}^{4}=32
$$

c. The cross sections are squares with diagonals in the xy-plane.

$$
\begin{aligned}
& A(x)=\frac{1}{2}(2 \sqrt{x})^{2}=2 x \\
& V=\int_{0}^{4} 2 x d x=2\left[\frac{1}{2} x^{2}\right]_{0}^{4}=16
\end{aligned}
$$

