AP Calculus AB
Solids of Revolution - Day 2

$$
2=18-x^{2}
$$

Let R be the region enclosed between the graphs of $y=2$ and $y=18-x^{2}$. Write an integral expression for the volume of the solid that is formed when region R is revolved about each of the given lines. You do not need to simplify your expressions.

$$
A_{B}-A_{s}
$$

a) The x axis. $\quad R=18-x^{2}-0=18-x^{2}$

$$
A_{c S}=\pi\left(18-x^{2}\right)^{2}-\pi(2)^{2}
$$

c) The line $y=-3$

d) The line $y=19$

$$
\begin{aligned}
R & =19-2=17 \quad A_{c s}=17 \pi-\left(1+x^{2}\right)^{2} \pi \\
r & =19-\left(18-x^{2}\right) \quad \\
& =1+x^{2} \\
V & =\pi \int_{-4}^{4}\left(17^{2}-\left(1+x^{2}\right)^{2}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
R & =19-2=17 \quad \text { cs }=17 \pi-\left(1+x^{2}\right) \pi \\
r & =19-\left(18-x^{2}\right) \\
& =1+x^{2} \\
V & =\pi \int_{-4}^{4}\left(17^{2}-\left(1+x^{2}\right)^{2}\right) d x
\end{aligned}
$$

