8.3 Day 2 Worksheet

Use the given information to find the volume of the solid.

1. The solid is created with cross-sections in the area created between $y=\sqrt{x}$ and $y=x$.
a. The cross sections are semi-circles which are perpendicular to the x-axis and have diameters that are in the ry plane.

$$
\begin{aligned}
d & =\sqrt{x}-x \\
r & =\frac{1}{2}(\sqrt{x}-x) \\
A_{c s}= & \frac{\pi}{8}(\sqrt{x}-x)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{A}_{c s}=\frac{1}{2} \boldsymbol{\pi} \boldsymbol{r}^{2} \\
& =\frac{1}{2} \pi\left(\frac{1}{2}(\sqrt{x}-x)\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Volume } & =\frac{\pi}{8} \int_{x_{0}}^{x^{1}}(\sqrt{x}-x)^{2} d x \\
& \approx 0.013
\end{aligned}
$$

b. The cross sections are isosceles right triangles with bases perpendicular to the y-axis.

$$
\begin{aligned}
& A_{c s}=\frac{1}{2} b^{2} \\
& V \text { volume }=y_{0}^{1} \frac{1}{2}\left(y-y^{2}\right)^{2} d y \\
& y=1 \\
& 2
\end{aligned}\left(y-y^{2}\right)^{2} d y
$$

2. The solid is created with cross-sections in the area created between $y=4 \sin x, x=\frac{\pi}{2}$, and the x-axis. The cross sections are squares with the diagonals perpendicular to the x-axis.

$$
\begin{aligned}
& A_{c s}=\frac{d^{2}}{2} \\
& =\frac{(4 \sin x)^{2}}{2}
\end{aligned}
$$

3. The solid is created with cross-sections in the area between $x=y^{4}, x=0$, and $y=16$. The cross-sections are circular disks with diameters that are perpendicular to the y-axis.

$$
\begin{aligned}
d=y^{4} \quad & A
\end{aligned}=\pi r^{2} \quad \begin{array}{rl}
r=\frac{1}{2} y^{4} & A \\
& =\pi\left(\frac{1}{2} y^{4}\right)^{2} \\
& A
\end{array}=\frac{\pi}{4} y^{8} .
$$

Review for the 8.2 Quiz

Find the area between the curves and lines $y=-2 x+3$ and $x=y^{2}$ (without calculator and completely simplify)

$$
\Delta y-3=-2 y^{2}
$$

$$
2 y^{2}+y-3=0
$$

$$
(2 y+3)(y-1)=
$$

Find the area between the curves and lines $f(x)=x^{3}-2 x+1$ and $g(x)=7 x+3$. (with calculator)

$$
\int_{A}^{B}[(x)-g(x)] d x+\int_{B}^{C}[g(x)-f(x)] d x
$$

