
6.3 Day 1 Thursday, January 17, 2019 7:47 AM

Average Value (Arg. output / Arg y)

$$v(t) = t$$
 ff/sec
1. $\int_{0}^{4} t dt = 8ft$
2. Arg velocify $E_{0,4}$] $\Delta s = \frac{\int_{0}^{4} t dt}{4-0} = \frac{2}{4} = 24t/sec$
Average value
 $f(x)$ is a continuous function on the
interval Earbil, flen
Arg. value $\frac{1}{b}a\int_{a}^{b}f(x)dx$
Ex.' Find the arg. value of $f(x)$:
a. who a calculator $f(x) = (7-x^{2}) [0,3]$
 $\frac{1}{3} - 0\int_{0}^{3} (7-x^{2}) dx$
 $\frac{1}{3} - 1\pi^{2}(3)^{2} = \frac{3}{4}tt$
b. where calculator $f(x) = 4-x^{2}$ on $E_{0,3}$]
 $\frac{1}{3}$

Avg. value =
$$\frac{1}{3}\int_{0}^{3}(4-x)dx = 1$$

Avg. value = $\frac{1}{3}\int_{0}^{3}(4-x)dx = 1$
Mean Value Theorem for Definite Integrals
If f is a continuous function on Ea, b.7,
then there is some c in Ea, b.7
where $f(c) = \frac{1}{b-a}\int_{0}^{3}f(x)dx$
Example Find when $f(x) =$ the avg. value.
 $f(x) = x^{2} + 1$
() Find the avg. value $\frac{1}{13-0}\int_{0}^{3}(x-1)dx = 0$
(2) $f(x) = avg$ value Avg. $value$
 $f(c) = c^{2} - 1$
 $c = 1$