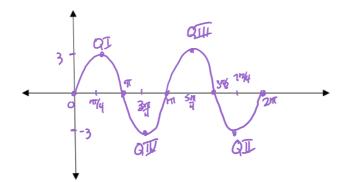
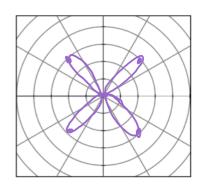

6.5 Day 2

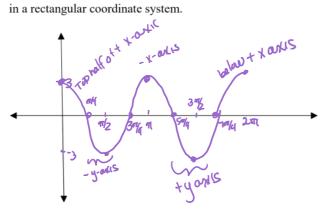
Wednesday, May 8, 2019 1:22 PM

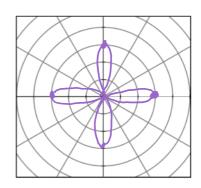



Is there a difference between the graphs of $r = 2 + 2\cos\theta$ and $r = -2 + 2\cos\theta$? Where do each of the graphs begin?

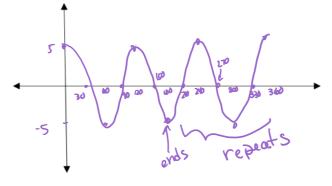
The graphs are the same, however r=2+20050 starts a) (2,0) and r=-2+20050 startsa) the pole.

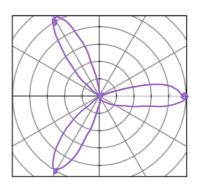
Graph the function $y = 3\sin(2\theta)$ from $[0, 2\pi]$ in a rectangular coordinate system.


Now graph $r = 3\sin(2\theta)$.



Graph the function $y = 3\cos(2\theta)$ from $[0, 2\pi]$ in a rectangular coordinate system.

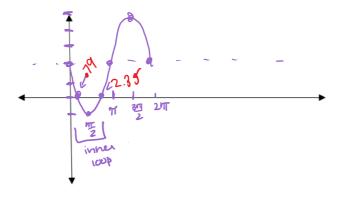

Now graph $r = 3\cos(2\theta)$.



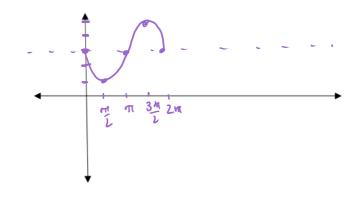
Graph the function $y = 5\cos(3\theta)$ from $[0, 2\pi]$ [0, 360] in a rectangular coordinate system.

Now graph $r = 5\cos(3\theta)$

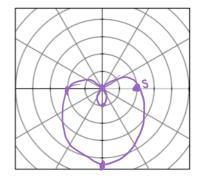
Use your graphing calculator to graph a few more, then answer the questions on the next page.

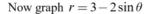

 $r = 4\cos(4\theta) \qquad r = 4\sin(4\theta)$ $r = 2\cos(5\theta) \qquad r = 2\sin(5\theta)$

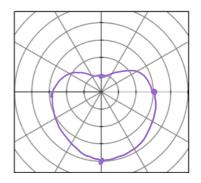
- What determines the length of the rose petals?
- When will the rose have an even number of leaves?
- When will the rose have an odd number of leaves?
- How can you tell how many petals the rose will have?
- How could you determine the spacing, in degrees, between the petals?
- How could you determine at what angle to graph the first petal?


ROSE GRAPH SUMMARY

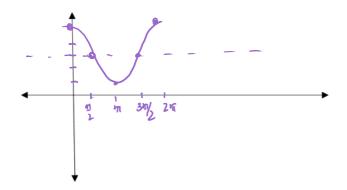
- $r = a\cos(n\theta)$ or $r = a\sin(n\theta)$ is the graph of a rose with n petals if n is odd, and 2n petals if n is even. Note: n is a whole number greater than 1.
- The petals of the rose have a length of |a|
- The spacing between the petals, in degrees, is $\frac{360^{\circ}}{\# petals}$
- The "first petal" for $r = a\cos(n\theta)$ occurs at 0°
- The "first petal" for $r = a\sin(n\theta)$ occurs at $\frac{90^{\circ}}{n}$
- Multiplying by -1 reflects all petals through the pole.

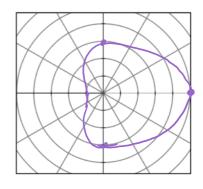

Graph the function $y = 2 - 3\sin\theta$ from $[0, 2\pi]$ in a rectangular coordinate system.

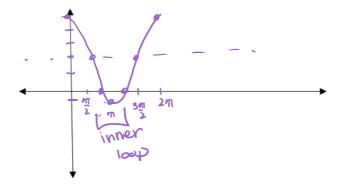

Graph the function $y = 3 - 2\sin\theta$ from $[0, 2\pi]$ in a rectangular coordinate system.

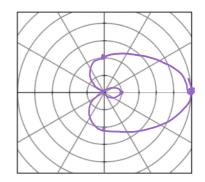


Now graph $r = 2 - 3\sin\theta$






Graph the function $y = 3 + 2\cos\theta$ from $[0, 2\pi]$ in a rectangular coordinate system.


Now graph $r = 3 + 2\sin\theta$

Graph the function $y = 2 + 3\cos\theta$ from $[0, 2\pi]$ in a rectangular coordinate system.

Now graph $r = 2 + 3\sin\theta$

Use your graphing calculator to graph a few more, then answer the questions on the next page.

$r = 2 + 5\sin\theta$	$r = 5 + 2\sin\theta$
$r = 3 - \cos \theta$	$r = 1 - 3\cos\theta$

What observations can you make????

- How many different shapes did you get?
- When do you get the shape with an inner loop?
- When do you get the shape without an inner loop?
- What determines whether or not the shape lies along the x or y axis?
- How can you determine where the graph crosses the axes?
- How can you change the equation to reflect the graph across an axis?

LIMACON GRAPH SUMMARY

- $r = a + b \cos \theta$ or $r = a + b \sin \theta$ is the graph of a limacon with an inner loop if |a| < |b| and without an inner loop if |a| > |b|
- The limacon lies along the x axis if the equation is of the form $r = a + b \cos \theta$ and lies along the y axis if the equation is of the form $r = a + b \sin \theta$
- The limacon has intercepts on the axis it lies on of b+a and b-a and intercepts along the other axis of $\pm a$.
- Changing the sign of b, reflects the limacon over an axis.