Precalculus Honors 6.5 Day 1 – Lines, circles, and Cardioids

Graph r = 3

Descried the shape of the graph.

Descried the shape of the graph.

Graph the function $y = 4\cos\theta$ in a rectangular coordinate system.

Let's confirm our graph of $r = 4\cos\theta$ by making a table.

r	θ
4	6
213	5/0
2	[/] 7/3
0	5/2
-4	π

circle done here 3 341/2 T/2 Im -3

Graph the function $y = 3\sin\theta$ in a rectangular coordinate system.

Now graph $r = 3\sin\theta$.

Let's confirm our graph of $r = 3\sin\theta$ by making a table.

r	θ
S	0
10	m/6
L.	πlz
1.5	55/10
O	T

Graph the function $y = -2\cos\theta$ in a rectangular coordinate system.

Let's confirm our graph of $r = -2\cos\theta$ by making a table.

r	θ
~]	713
Q	π/2
/	24/2
. L	Ψ.)

Now graph $r = -2\cos\theta$.

Graph $r = -5\sin\theta$

What observations can you make?

- The circle will lie on the \underline{X} axis if it has a cosine in its equation.
- The circle will lie on the 4 axis if it has a sine in its equation.
- Multiplying by a constant increases the size of the <u>rocius</u> diameter of the circle.
- Multiplying by a negative $\underline{reflect}$ the circle across an axis.

Graph the function $y = 4 + 4\cos\theta$ in a rectangular coordinate system.

Let's confirm our graph of $r = 4 + 4\cos\theta$ by making a table.

r	θ
8	Ð
ч	·π/2
ላ	27
0	\widetilde{T}
2	211/2
4	311/2
8	्रना

Graph the function $y = 2 + 2\sin\theta$ in a rectangular coordinate system.

Now graph $r = 2 + 2\sin\theta$.

Let's confirm our graph of $r = 2 + 2\sin\theta$ by making a table.

This graph is called a Cardioid general form is $r = a \pm a \cos \theta$ or $a \pm a \sin \theta$ What observations did you make?

♦ The cardioid follows the same rules as the circle does in terms of which axis it lies on....

Positive cosine \longrightarrow ______ axis Negative cosine \longrightarrow ______ axis Positive sine \longrightarrow ______ axis Negative sine \longrightarrow ______ axis

 \diamond The length of the cardioid can be found by

 \diamondsuit The intercepts of the cardioid can be found

5	
da	
±a	