Precalculus Honors
6.5 Day 1 - Lines, circles, and Cardioids

Graph $\mathrm{r}=3$

Descried the shape of the graph.
Descried the shape of the graph.

Graph the function $y=4 \cos \theta$ in a rectangular coordinate system. Now graph $r=4 \cos \theta$.

*remember

(r, θ)

Let's confirm our graph of $r=4 \cos \theta$ by making a table.

r	θ
4	0
$2 \sqrt{3}$	$\pi / 6$
2	$\pi / 3$
0	$\pi / 2$
-4	π

Graph the function $y=3 \sin \theta$ in a rectangular coordinate system. Now graph $r=3 \sin \theta$.

Let's confirm our graph of $r=3 \sin \theta$ by making a table.

r	θ
0	0
1.5	$\pi / 6$
3	$\pi / 2$
1.5	$5 \pi / 66$
0	$\pi \pi$

Graph the function $y=-2 \cos \theta$ in a rectangular coordinate system.

Now graph $r=-2 \cos \theta$.

Let's confirm our graph of $r=-2 \cos \theta$ by making a table.

r	θ
-1	$\pi / 3$
0	$\pi / 2$
1	$2 \pi / 3$
2	π

Graph $r=-5 \sin \theta$

What observations can you make?

- The circle will lie on the χ axis if it has a cosine in its equation.
- The circle will lie on the Y axis if it has a sine in its equation.
- Multiplying by a constant increases the size of the rocius/dicenefor of the circle.
- Multiplying by a negative rethect the circle across an axis.

Graph the function $y=4+4 \cos \theta$ in a rectangular coordinate system.

Now graph $r=4+4 \cos \theta$.
count $\log 2$

Let's confirm our graph of $r=4+4 \cos \theta$ by making a table.

r	θ
8	0
4	$\pi / 2$
2	$2 \pi \pi$
0	π
2	$2 \pi / 3$
4	$3 \pi / 2$
8	2π

Graph the function $y=2+2 \sin \theta$ in a rectangular coordinate system.

Let's confirm our graph of $r=2+2 \sin \theta$ by making a table.

Graph the following:

Now graph $r=2+2 \sin \theta$.

$$
r=3-3 \sin \theta
$$

This graph is called a Cardioid general form is $r=a \pm a \cos \theta$ or $a \pm a \sin \theta$

What observations did you make?

\diamond The cardioid follows the same rules as the circle does in terms of which axis it lies on....

\diamond The length of the cardioid can be found by
\diamond The intercepts of the cardioid can be found

