Determine the equation and then draw a graph.

1) Circle with radius 4; center at origin:

2) Circle with radius 5, one endpoint of diameter lies on origin; lying on the positive x-axis:

3) Circle with radius 3) one endpoint of diameter lies on origin; lying on the negative x-axis:

$$r = -6\cos\theta$$

4) Circle with radius 2; one endpoint of diameter lies on origin; lying on the negative y-axis:

5) Line with positive slope (passes through 1^{st} and 3^{rd} quadrant):

6) Line with negative slope (passes through 2nd and 4th quadrant):

$$\Theta = \frac{2\pi}{3}$$

7) Cardioid with x-intercepts (4, 0°) and (0, 180°); y-intercepts +/- 2:

Give the y-intercepts in polar form: $(2, \frac{\pi}{2})(2, \frac{3\pi}{2})$

8) Cardioid with x-intercepts $(0,0^{\circ})$ and $(8, 180^{\circ})$; y-intercepts +/-4:

Give the y-intercepts in polar form: $(4, \frac{\pi}{2})$ $(4, \frac{3\pi}{2})$

9) Cardioid with y-intercepts $(6, 90^{\circ})$ and $(0, 270^{\circ})$; x-intercepts +/-3:

Give the x-intercepts in polar form: $(3,0)(3,\pi)$

10) Cardioid with y-intercepts (0, 90°) and (4, 270°); x-intercepts +/- 2:

$$r = a - asin \theta$$

Give the x-intercepts in polar form: $(2,0)(2,\pi)$

