\qquad
HW day 1 - Circles and Cardioids
Determine the equation and then draw a graph.

1) Circle with radius 4 ; center at origin:
$r=4$
$d=10$

2) Circle with radius 5, one endpoint of diameter lies on origin; lying on the positive x-axis:
\qquad
$d=6$

3) Circle with radius 3. one endpoint of diameter lies on origin; lying on the negative x-axis:
\qquad

4) Circle with radius 2 ; one endpoint of diameter lies on origin; lying on the negative y-axis:
$r=-4 \sin \theta$

5) Line with positive slope (passes through $1^{\text {st }}$ and $3^{\text {rd }}$ quadrant):

6) Line with negative slope (passes through $2^{\text {nd }}$ and $4^{\text {th }}$ quadrant):

$$
\theta=\frac{2 \pi}{3}
$$

7) Cardioid with x-intercepts $\left(4,0^{\circ}\right)$ and $\left(0,180^{\circ}\right) ; y$-intercepts $+/-2$:

$$
\begin{aligned}
& r=2+2 \cos \theta \\
& \text { Give the } y \text {-intercepts in polar form: }\left(2, \frac{\pi}{2}\right)\left(2, \frac{3 \pi}{2}\right)
\end{aligned}
$$

8) Cardioid with x-intercepts ($0,0^{\circ}$) and ($8,180^{\circ}$); y-intercepts $+/-4$:

$$
\begin{aligned}
& r=4-4 \cos \theta \\
& \text { Give the y-intercepts in polar form: }\left(4, \frac{\pi}{2}\right)\left(4, \frac{3 \pi}{2}\right)
\end{aligned}
$$

9) Cardioid with y-intercepts ($6,90^{\circ}$) and ($0,270^{\circ}$); x-intercepts $+/-3$:
\qquad

$$
r=3+3 \sin \theta
$$

Give the x-intercepts in polar form: $(3,0)(3, \pi)$

10) Cardioid with y-intercepts ($0,90^{\circ}$) and ($4,270^{\circ}$); x-intercepts $+/-2$:
\qquad
Give the xinterecepts in polar form: $(2,0)(2, \pi)$

