Remember:

$$
r^{2}=x^{2}+y^{2} \quad x=r \cos \theta \quad y=r \sin \theta
$$

Example \#1: Graph $r=4 \sec \theta$ on your calculator then convert it to rectangular form and identify the graph.

$$
\begin{gathered}
r=4 \cdot \frac{1}{\cos \theta} \\
r \cos \theta=4 \\
x=4
\end{gathered}
$$

Example \#2: Graph $r=3 \csc \theta$ on your calculator then convert it to rectangular form and identify the graph.

$$
\begin{aligned}
r & =3 \cdot \frac{1}{\operatorname{sIN} \theta} \\
r \operatorname{SIN} \theta & =3 \\
y & =3
\end{aligned}
$$

Example \#3: Graph $r=-12 \cos \theta$ on your calculator then convert it to rectangular form and identify the graph.

$$
\begin{aligned}
& r^{2}=-12 r \operatorname{cose} \\
& x^{2}+y^{2}=-12 x \\
& x^{2}+12 x+y^{2}=0
\end{aligned} \quad \begin{aligned}
& \text { complete the sQuAre } \\
& (x+6)^{2}+y^{2}=36 \\
& x^{2}-12 x+36+y^{2}=36 \\
& \text { circle }(-6,0) \quad r=6
\end{aligned}
$$

Example \#4: Graph $r=4 \cos \theta-8 \sin \theta$ on your calculator then convert it to rectangular form and identify the graph.

$$
\left.\begin{array}{l}
r^{2}=4 r \cos \theta-8 r \operatorname{SIN} \theta \\
x^{2}+y^{2}=4 x-8 y \\
x^{2}-4 x+y^{2}+8 y=0
\end{array}\right\} \begin{aligned}
& x^{2}-4 x+4+y^{2}+8 y+16=4+16 \\
& (x-2)^{2}+(y+4)^{2}=20
\end{aligned} \begin{aligned}
& \text { Complete the SQuare } \\
& \text { CIRCle } c(2,-4) \quad r=\sqrt{20}
\end{aligned}
$$

Example \#5: Identify $x^{2}+y^{2}=9$ then convert it to polar form and graph.

$$
\begin{gathered}
\text { CIRCle } c(0,0), r=3 \\
r^{2}=9
\end{gathered}
$$

$r= \pm 3$ both are circles $C(0,0), r=3$

Example \#4: Identify $(x-2)^{2}+(y+7)^{2}=53$ then convert it to polar form and graph.
Circle $c(2,-7) \quad r=\sqrt{53}$
$r=0 \quad$ circle $c(0,0) \quad r=0$

$$
\begin{aligned}
& x^{2}-4 x+4+y^{2}+14 y+49=53 \\
&\left(x^{2}+y^{2}\right)-4(x)+14(y)=0 \\
&\left(r^{2}\right)-4(r \cos \theta)+14(r \sin \theta)=0 \\
& r(r-4 \cos \theta+14 \sin \theta)=0
\end{aligned}
$$ or

$$
\begin{gathered}
r-4 \cos \theta+14 \sin \theta=0 \\
r=4 \cos \theta-14 \sin \theta \\
\text { CIrcle } c(2,-7) r=\sqrt{53}
\end{gathered}
$$

Example \#5: Identify $2 x-3 y=7$ then convert it to polar form and graph.

$$
\begin{array}{rlr}
2(x)-3(y)=7 & \text { line } & w / \text { slope } \frac{2}{3}, y-I N t-\frac{7}{3} \\
2(r \cos \theta)-3(r \sin \theta)=7 & -3 y & =-2 x+7 \\
r(2 \cos \theta-3 \sin \theta)=7 & y=\frac{2}{3} x-\frac{7}{3} \\
r=\frac{7}{2 \cos \theta-3 \sin \theta} &
\end{array}
$$

Example \#6: Radar detects two airplanes at the same altitude. Their polar coordinates are ($8 \mathrm{mi}, 110^{\circ}$) and $\left(5 \mathrm{mi}, 15^{\circ}\right)$. How far apart are the planes? HINT: Plot the two coordinates and draw a triangle with these points at the ends of the hypotenuse.

1) Convert to rectangular + use Distance formula

$$
\begin{aligned}
& \left(8,110^{\circ}\right) \approx(-2.74,7.52) \\
& \left(5,15^{\circ}\right) \approx(4.83,1.29) \\
& d=\sqrt{(-2.74-4.83)^{2}+(7.52-1.29)^{2}} \\
& \quad \approx 9.8
\end{aligned}
$$

2) Use law of Cosines

$$
\begin{aligned}
& d^{2}=5^{2}+8^{2}-2.5 .8 \cos 95^{\circ} \\
& d \approx 9.8
\end{aligned}
$$

