A polar coordinate system is a plane with a point O, called the \qquad , and a ray from O , called the Polar $4 x=5$. Each point P in the plane is assigned \qquad as follows:

- r, is the directed distance from O to P
- θ, is the directed Angle whose initial side is on the polar axis and whose terminal side is on the line OP.

EXAMPLE \#1: PLOTTING POLAR POINTS

Step \#1: Start on the Polar Axis and locate the angle. Positive is counterclockwise and negative is clockwise. Step \#2: If r is positive, move out that distance along the terminal side of the angle and plot the point.
Step \#3: If r is negative, move "backwards" or in a direction opposite that of the terminal side of the angle and plot the point.

Example \#1:

Plot the following points:

EXAMPLE \#2 : FINDING SEVERAL POLAR COORDINATES
$1^{\text {st }}$) Plot $P\left(3, \frac{\pi}{3}\right)=P\left(-3, \frac{4 \pi}{3}\right)=P\left(3,-\frac{5 \pi}{3}\right)$

$$
=P\left(3, \frac{\pi}{3}+2 \pi n\right)
$$

$\left.2^{\text {nd }}\right)$ Find two additional pairs of polar coordinates for P.

$$
=f\left(-3, \frac{4 \pi}{3}+2 \pi n\right)
$$

NOTE: The coordinates $(r, \theta),(r, \theta+2 \pi n)$ and $(-r, \theta+(2 n+1) \pi)$ are all name the same point. Discuss why. As a result, any point on a polar coordinate system can be specified in an infinite number of ways.

COORDINATE CONVERSION

EXAMPLE \# 3 : Find the rectangular coordinates of the points with the given polar coordinates.
A) $P\left(3, \frac{5 \pi}{6}\right)$

B) $Q\left(2,-200^{\circ}\right)$

$$
p\left(2 \cos \left(-200^{\circ}\right), 2 \sin \left(-200^{\circ}\right)\right)
$$

$$
P\left(-\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right)
$$

$$
P(-1.879, .684)
$$

EXAMPLE \# 4 : Find two polar coordinate pairs for the points with given rectangular coordinates.
A) $\mathrm{P}(-1,1)$
$(-1,1)$
B) $\mathrm{Q}(-3,0)$
$r=\sqrt{(-1)^{2}+1^{2}}=\sqrt{2} \xrightarrow{\square}$

$$
r=\sqrt{(-1)^{2}+1^{2}}=\sqrt{2}
$$

$$
\theta=\tan ^{-1}\left(\frac{1}{-1}\right)=-\frac{\pi}{4}
$$

$$
\theta=\tan ^{-1} \cdot\left(\frac{0}{-3}\right)=0^{0}
$$

$$
Q\left(-3,0^{\circ}\right)=Q\left(3,180^{\circ}\right)
$$

NOTE: When converting from rectangular to polar coordinates there are infinitely many possible polar coordinate pairs as possible solutions because The coordinates $(r, \theta),(r, \theta+2 \pi n)$ and $(-r, \theta+(2 n+1) \pi)$ are all name the same point.

