1. Let h be the continuous function defined by $h(x)=\int_{1}^{x} f(t) d t$ over the interval $(0,8]$. The graph of $\mathrm{f}(\mathrm{x})$ is given below.
a) Find $h(1) . \quad h(1)=\int_{1}^{1} f(t) d t=0$
b) Is $h(2)$ positive or negative? Justify your answer.
c) Is $h(0)$ positive or negative?

$$
h(0)=\int_{1}^{0} f(t) d t \text { negative }
$$

d) Find any x values where $h(x)$ has a relative max. Justify your answer.
$h(x)$ has a relative max a $x=4$
bic $h^{\prime}(x)=f(x)$ goes from + to- $0 x=4$.
e) Find any x values where $h(x)$ has a relative min. Justify your answer.
$h(x)$ has a relative min $O x=8$, we $x=8$ is a local min and $h^{\prime}(x)=f(x)<0$ to the lett of $x=8$.
f) Find all x values of inflection points of $h(x)$ since we are given a graph of $f(x)=h^{\prime}(x)$ we look when $f(x)$ goes from increasing to decreasing or bee to inc. This implies a sigh change or $h^{\prime \prime}(x)$.

$$
x=1,2.5,4.5,6,7.5
$$

2. Let $s=\int_{0}^{t} f(x) d x$ be the position of a particle moving along a coordinate axis [0,10]. The graph of $\mathrm{f}(\mathrm{t})$ is given.

$$
\begin{aligned}
& S=f(x)=V \\
& \underbrace{t=2}_{3} ? \text { At } \underbrace{t}_{0}
\end{aligned}
$$

b) Is the acceleration at $t=5.5$ positive or negative? Justify your answer. since $f(x)=s^{\prime}=$ veloci is increasing, acceleration is $7 D_{5,5}$
c) What is the particle's position at $\mathrm{t}=0$? $\mathrm{t}=2$? $\mathrm{t}=5$? ${ }^{5,5}$

$$
s(0)=0 \quad S(2)=6 \quad S(5)=5.5
$$

d) At what time does s have its largest value?

Justify your answer.
S has a max of $7.5 D t=3$ b le $S^{\prime}=f$ goes from t to - $d^{t=3} S S(10)=2$ e) When is the particle moving towards the origin? Away?
toward $(3,9)$ aw an $(0,3) \cup(9,10)$
f) Find all t values of critical points of $s(t)$ when $s^{\prime}=0$ or is undefined
g) Find all t values of inflection $t=3,9$
g) Find all t values of inflection points of $s(t)$. $t=5,4,8$

3. Let h be the continuous function defined by $h(x)=\int_{0}^{x} f(t) d t[0,10]$. The graph of $\mathrm{f}(\mathrm{x})$ is given below.

$$
n^{\prime}(x)=f(x) \notin
$$

a) Find $f(1), f(4) \quad f(1)=-3 \quad f(4)=1$
b) Is $h(2)$ positive or negative?
c) Is $h(5)$ positive or negative? Justify your answer.
d) Find any x values where $h(x)$ has a relative max. Justify your answer. $t=0,5$
e) Find any x values where $h(x)$ has a relative
min. Justify your answer. ${ }^{n}(x) 3$ has a $b^{\text {all }} \min ^{\prime}(x)=t(x)$
$n(x)$ has a rel. min
$t=10$ ole $t=10$ is an end pt. $h^{\prime}(x)=f(N<0$ to the lett:
f) Find all x values of inflection points of $h(x)$

$$
t=1,4,6,7,8
$$

$h(x)$ has a rel. max $\theta t=0$ bl $t=0$ is an endpt $\xi h^{\prime}(x)=f(x)<0$ to the right.
$n(x)$ has a rel. max $2 t=5$ b lc $h^{\prime}(x)=f(x)$ goes from + to-
4.

The figure above shows the graph of f^{\prime}, the derivative of a twice- differentiable function f, on the closed interval $0 \leq x \leq 8$. The areas of the regions between the graph of f ' and the x-axis are labeled in the figure.

* $f(x)$ is the antiderivatove of f^{\prime} ty you must understand
a. If $f(0)=3$, write an expression for $f(x)$. Find $f(6)$
$\int_{0}^{x} f^{n}(t) d t=f(x)-f(0)$

$$
\begin{aligned}
& f(x)=f(0)+\int_{0}^{x} f^{\prime}(t) d t \quad\left[\begin{array}{l}
6
\end{array}=3+[2+6-3]\right. \\
& f(6)=3+\int_{0}^{6} f^{\prime}(t) d t
\end{aligned} \quad=8
$$

b. If $f(4)=-7$, write an expression for $f(x)$. Then, find $f(1)$.
$\int_{4}^{x} f^{\prime}(t) d x=f(x)-f(4) \quad f(x)=f(4)+\int_{4}^{x} f^{\prime}(t) d x$
c. If $f(8)=-2$, write an expression for $f(x)$. Then, find $f(0)$

$$
\begin{array}{ll}
\int_{8}^{x} f^{\prime}(t) d t=f(x)-f(8) & f(0)=-2+\int_{8}^{0} f^{\prime}(t) d t \\
f(8)+\int_{8}^{x} f^{\prime}(t) d t=f(x) & =-2-\int_{0}^{8} f^{\prime}(t) d t \\
& f(0)=-2-(12)=-14
\end{array}
$$

$$
\begin{aligned}
f(1) & =-7+\int_{4}^{1} f^{\prime}(t) d t \\
& =-7-\int_{1}^{4} f^{\prime}(t) d t
\end{aligned}
$$

The figure above shows the graph of f^{\prime}, the derivative of a twice- differentiable function f, on the closed interval $0 \leq x \leq 8$. The areas of the regions between the graph of f ' and the x-axis are labeled in the figure. Let $f(0)=9$.
a. Write an expression for $f(x)$.

$$
\int_{0}^{x} f^{\prime}(t) d t=
$$

$$
\begin{aligned}
& f(x)=f(0)+\int_{0}^{x} f^{\prime}(t) d t \\
& f(x)=9+\int_{0}^{x} f^{\prime}(t) d t
\end{aligned}
$$

$$
f(x)-f(0)
$$

b. Find the maximum value of $f(x)$ on $[0,8]$. Justify your answer.

$f(x)$ has a max of 21 a $x=8$ bile $x=8$ is an endpt and $f^{\prime}>0$ to the left of $x=8$.

Check all	
x	$f(x)$
0	$9+0=9$
4	$9+8=17$
6	$9+5=14$
$* 8$	$9+12=21$

Let p be the antiderivative of f and $p(-2)=-8$.
Graph of $f=P^{\prime}(x)$
a. Write an expression for $p(x)$.

$$
\begin{aligned}
& \int_{-2}^{x} f(t) d t=p(x)-p(-2) \\
& p(-2)+\int_{-2}^{x} f(t) d t=p(x) \\
& -8+\int_{-2}^{x} f(t) d t=p(x)
\end{aligned}
$$

b. Find the minimum value of $p(x)$ on $[-8,6]$. Justify your answer.

$$
f=p^{\prime}(x)
$$

check all	
x	$P(x)$
-8	-20
4	4
-6	-16
6	0

$$
\begin{aligned}
p(-8) & =-8+\int_{-8}^{-8} f(t) d t \\
& \left.=-8-\int_{-8}^{-2} f(t) d t=-8-12\right)
\end{aligned}
$$

$p(x)$ has a min of $-20 a$ $x=-8$ bic $x=-8$ is an endpt

$$
\begin{aligned}
P(4) & =-8 t \int_{-2}^{4} f(t) d t \\
& =-8+12
\end{aligned}
$$

and $p^{\prime}(x)=f(x)>0$ to the right of $x=-8$.

$$
\begin{aligned}
p(-6)= & -8-\int_{-6}^{-2} f(t) d t \\
= & -8-8 \\
p(6)= & -8+\int_{-2}^{6} f(t) d t \\
& -8+12-4=0
\end{aligned}
$$

