1. Consider a particle with velocity given by the function $v(t)=5+4 t$. Find the position function $s(t)$ and the displacement (change in position) from $t=0$ to $t=10$.

$$
\begin{aligned}
& s(t)=5 t+2 t^{2}+c \\
& s(10)=5 \cdot 10+2 \cdot 10^{2}+c=250+c \\
& s(0)=5 \cdot 0+2 \cdot 0+c= \\
& \Delta s=s(10)-s(0)=250+c-c=250
\end{aligned}
$$

2. Now, graph $v(t)=5+4 t$ and find $\int_{0}^{10} v(t) d t$.

$$
\begin{aligned}
v(t) \left\lvert\, \begin{array}{ll}
(10,45)^{0} v(t) & \int_{0}^{10} v(t) d t
\end{array}\right. & =\frac{1}{2} \cdot 10 \cdot(5+45) \\
& =250
\end{aligned}
$$

3. How is the displacement found in part 1 related to $\int_{0}^{10} v(t) d t$ found in part 2?
They ane equal.
4. How is the position function related to the velocity function?

The position function
of the velocity.

CONCLUSION:
For any function $f(t), \quad \int_{a}^{x} f(t) d t=F(x)-F(a), \quad$ where $F(x)=$ the antiderivative of $f(x)$.

Examples: Evaluate the integrals below using antiderivatives and the information above. Check your answers using faint on your calculator.

1. $\int_{\pi}^{2 \pi} \sin t d t=-\cos (2 \pi)-(-\cos (\pi))=-1-1=-2$
2. $\int_{1}^{e} \frac{1}{u} d u=\ln e-\ln 1=1-0=1$
3. $\int_{1}^{4}-x^{-2} d x=4^{-1}-1^{-1}=\frac{1}{4}-1=\frac{-3}{4}$
4. $\int_{-1}^{1} \frac{1}{1+x^{2}} d x=\tan ^{-1}(1)-\tan ^{-1}(-1)=\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)=\frac{\pi}{2}$
5. $\int_{0}^{1 / 2} \frac{1}{\sqrt{1-x^{2}}} d x=\operatorname{SIN}^{-1}(1 / 2)-\operatorname{SIN}^{-1}(0)=\frac{\pi}{6}-0=\frac{\pi}{6}$
6. $\int_{1}^{e} \frac{x^{2}+1}{x} d x=\int_{1}^{e}\left(\frac{x^{2}}{x}+\frac{1}{x}\right) d x=\int_{1}^{e}\left(x+\frac{1}{x}\left|d x=\frac{1}{2} x^{2}+\ln x\right|_{1}^{e}\right.$

$$
\begin{aligned}
& =\frac{1}{2} e^{2}+\ln e-\left(\frac{1}{2} \cdot 1^{2}+\ln 1\right) \\
& =\frac{1}{2} e^{2}+1-\frac{1}{2}=\frac{1}{2} e^{2}-\frac{1}{2}=\frac{1}{2}\left(e^{2}-1\right)
\end{aligned}
$$

