AP Calculus AB


1. Rewrite as an integral: $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\sin ^{2}\left(c_{k}\right) \bullet \cos \left(c_{k}\right)\right) \Delta x$ on $[-6,8]$.

$$
\int_{-6}^{8} \sin ^{2} x \cos x d x
$$

2. Use geometry to evaluate each integral.
a) $\int_{1}^{4}\left(\frac{1}{2} t+1\right) d t=\frac{1}{2}(3)(3+1.5)$
b) $\int_{-1}^{2}(1-|x|) d x$
c) $\int_{-3}^{3} \sqrt{9-x^{2}} d x=\frac{1}{2} \sqrt{\pi} 3^{2}$ $=6.75$

3. Given that $\int_{-1}^{1} f(x) d x=0$ and $\int_{0}^{1} f(x) d x=5$, find
a) $\int_{-1}^{0} f(x) d x$

$$
\left.\int_{-1}^{1} f(x) d x\right)-\int_{1}^{0} f(x) d x \quad 0-5=-5
$$

b) $\int_{0}^{1} f(x) d x-\int_{-1}^{0} f(x) d x$

$$
5-(-5)=10
$$

c) $\int_{1}^{0} 2 f(x) d x$

$$
2 \int_{1}^{0}+(x) d x \quad 2(-5)=-10
$$

Calculator OK
4. The graph of $f(x)$ below consists of line segments and a semi-circle. Use geometry to evaluate each definite integral. (2 points each)
a) $\int_{0}^{2} f(x) d x=\frac{1}{4} \pi(2)^{2}=5 \pi$
b) $\int_{2}^{6} f(x) d x=\frac{1}{2}(4)(2)=4$

c)

$$
\begin{aligned}
\int_{-4}^{6}|f(x)| d x & =\frac{1}{2}(2)(1)+\frac{1}{2} \pi(2)^{2}+\frac{1}{2}(4)(2) \\
& =1+2 \pi+4 \\
& =5+2 \pi
\end{aligned}
$$

d) $\int_{-4}^{6} f(x) d x$

$$
-1-2 \pi+4 \quad 3-2 \pi
$$

e) $\int_{4}^{2} f(x) d x$

$$
=-\int_{2}^{4} f(x) d x=-\frac{1}{2}(2)(2)=-2
$$

f) $\int_{-4}^{6}(f(x)+2) d x$

$$
\frac{1}{2}(2)(1+2)+(4(x)+2) d x
$$

$$
3+8-2 \pi+4+8
$$

$23-2 \pi$

