6.1 Day 2 Rectangular Approximation Method Practice

Name

When we estimate distances from velocity data it is
sometimes necessary to use times $t_0, t_1, t_2, t_3, \ldots$ that
are not equally spaced. We can still estimate distances
using the time periods $\Delta t_i = t_i - t_{i-1}$. For example, on
May 7, 1992, the space shuttle Endeavour was launched
on mission STS-49, the purpose of which was to install
new perigee kick motor in an Intelsat communications
atellite. The table, provided by NASA, gives the veloc.
ty data for the shuttle between liftoff and the jettisoning
of the solid rocket boosters.

Event	Time (s)	Velocity (ft/s)
Launch	0]0	0
Begin roll maneuver	10	185
End roll maneuver	5 15	319
Throttle to 89%	20	447
Throttle to 67%	37 32	742
Throttle to 104%	59	1325
Maximum dynamic pressure	62	1445
Solid rocket booster		
separation	125	415

Use these data to estimate the height above Earth's surface of the space shuttle Endeavour, 62 seconds after liftoff.

USING LRAM 10.0 + 5.185 + 5.319 + 12.447 + 27.742 + 3.1325 = 31,893 ft USING RRAM

10.185 + 5.319 + 5.447 + 12.742 + 27.1325 + 3.1445= 54,694 ft

The speed of a runner increased steadily during the first three seconds of a race. Her speed at half-second intervals is given in the table. Find lower and upper estimates for the distance that she traveled during these three seconds.

5.5.5.5.5.5								
7 (s)	0	0.5	1,0	1.5	2.0	2.5	3,0	
v (ft/s)	Ō	6.2	10.8	14,9	18.1	19.4	20.2	

$$\frac{V_{ppen} \text{ estimate } (RRAM)}{.5 (6.2) + .5 (10.8) + .5 (14.9) + .5 (18.1) + .5 (19.4) + .5 (20.2) = 44.8 \text{ ft}}{Lower \text{ estimate } (LRRAM)}$$

.5 (b) + .5 (6.2) + .5 (10.8) + .5 (14.9) + .5 (18.1) + .5 (19.4) = 34.7 \text{ ft}}

From the given data, estimate the area between the curves for $0 \le x \le 2$.

x	0.0	0.2	0.4	0.6	0.8	1.0
f(x)	3.2	3.6	3.8	3.7	3.2	3.4
g(x)	1.2	1.5	1.6	2.2	2.0	2.4
x	1.2	1.4	1.6	1.8	2.0	
f(x)	3.0	2.8	2.4	2.9	3.4	
g(x)	2.2	2.1	2.3	2.8	2.4	

$$0.2 \left(f(x) - g(x) \right)$$

$$\frac{LRAM}{2(2) + 2(2.1) + 2(2.2) + \dots + 2(0.1) = 2.34$$

$$\frac{RRAM}{2(2.1) + 2(2.2) + 2(1.5) + \dots + 2(1) = 2.50$$

The cross-sectional areas of an underwater object are given. Estimate the volume.

$$\sqrt{= \times \cdot A(\times)}$$

x	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2
A(x)	0.4	1.4	1.8	2.0	2.1	1.8	1.1	0.4	0

 $V \approx 0.4(.4) + 0.4(1.4) + 0.4(1.8) + ... + 0.4(0.4) = 4.4$

$$\frac{V_{SING} RRAM}{V \approx 0.4(1.4) + 0.4(1.8) + 0.4(2.0) + ... + 0.4(0) = 4.24}$$

The velocity graph of a braking car is shown. Use it to estimate the distance traveled by the car while the brakes are applied.

$$MRAM_{6}:$$

$$I(55 + 40 + 30 + 18 + 10 + 5) = 158^{5t}$$

$$LRAM_{6}:$$

$$I(70 + 48 + 35 + 22 + 15 + 8) = 198^{5t}$$

$$RRAM_{6}:$$

$$I(48 + 35 + 22 + 15 + 8 + 0) = 128^{5t}$$

Assume initial is O

A power plant generates electricity by burning oil. Pollutants produced by the burning process are removed by scrubbers in the smokestacks. Over time the scrubbers become less efficient and eventually must be replaced when the amount of pollutants released exceeds government standards. Measurements taken at the **end** of each month determine the rate at which pollutants are released in the atmosphere as recorded in the table below.

Month	January (31	February (28	March (31	April (30	May (31	June (30
(days in	days)	days)	days)	days)	days)	days)
month) 👂	31,.20					
Pollutant	0.20	0.25	0.27	0.34	0.45	0.52
release rate						
(tons/day)						
Month	July (31	August (31	September	October (31	November	December
(days in	days)	days)	(30 days)	days)	(30 days)	(31 days)
month)						
Pollutant	0.63	0.70	0.81	0.85	0.89	0.95
release rate						
(tons/day)						

a. Use a right hand rectangular approximation method to estimate the total tonnage of pollutants released into the air by the end of December.

31(.2) + 28(.25) + 31(.27) + 30(.34) + 31(.45) + 30(.52)+ 31(.45) + 31(.70) + 30(.81) + 31(.85) + 30(.87) + 31(.95)= 209.35

b. Use a left hand rectangular approximation method to estimate the total tonnage of pollutants released into the air by the end of December.

31(0) + 28(.7) + 31(.25) + 30(.27) + 31(.34) + 30(.45)+ 31(.52) + 31(.03) + 30(.70) + 31(.81) + 30(.85) + 31(.89)120.34

c. In the best case scenario, approximately when will a total of 125 tons of pollutants have been released into the air?

oct - Nov